Compact sets #
We define a few types of compact sets in a topological space.
Main Definitions #
For a topological space α
,
TopologicalSpace.Compacts α
: The type of compact sets.TopologicalSpace.NonemptyCompacts α
: The type of non-empty compact sets.TopologicalSpace.PositiveCompacts α
: The type of compact sets with non-empty interior.TopologicalSpace.CompactOpens α
: The type of compact open sets. This is a central object in the study of spectral spaces.
Compact sets #
The type of compact sets of a topological space.
Instances For
Equations
- TopologicalSpace.Compacts.instSetLike = { coe := TopologicalSpace.Compacts.carrier, coe_injective' := ⋯ }
See Note [custom simps projection].
Equations
Instances For
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- TopologicalSpace.Compacts.instSup = { sup := fun (s t : TopologicalSpace.Compacts α) => { carrier := ↑s ∪ ↑t, isCompact' := ⋯ } }
Equations
- TopologicalSpace.Compacts.instInfOfT2Space = { inf := fun (s t : TopologicalSpace.Compacts α) => { carrier := ↑s ∩ ↑t, isCompact' := ⋯ } }
Equations
- TopologicalSpace.Compacts.instTopOfCompactSpace = { top := { carrier := Set.univ, isCompact' := ⋯ } }
Equations
- TopologicalSpace.Compacts.instSemilatticeSup = Function.Injective.semilatticeSup SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.Compacts.instDistribLatticeOfT2Space = Function.Injective.distribLattice SetLike.coe ⋯ ⋯ ⋯
Equations
- TopologicalSpace.Compacts.instOrderBot = OrderBot.lift SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.Compacts.instBoundedOrderOfCompactSpace = BoundedOrder.lift SetLike.coe ⋯ ⋯ ⋯
The type of compact sets is inhabited, with default element the empty set.
The image of a compact set under a continuous function.
Equations
- TopologicalSpace.Compacts.map f hf K = { carrier := f '' K.carrier, isCompact' := ⋯ }
Instances For
A homeomorphism induces an equivalence on compact sets, by taking the image.
Equations
- TopologicalSpace.Compacts.equiv f = { toFun := TopologicalSpace.Compacts.map ⇑f ⋯, invFun := TopologicalSpace.Compacts.map ⇑f.symm ⋯, left_inv := ⋯, right_inv := ⋯ }
Instances For
The image of a compact set under a homeomorphism can also be expressed as a preimage.
The product of two TopologicalSpace.Compacts
, as a TopologicalSpace.Compacts
in the product
space.
Instances For
Nonempty compact sets #
The type of nonempty compact sets of a topological space.
Instances For
Equations
- TopologicalSpace.NonemptyCompacts.instSetLike = { coe := fun (s : TopologicalSpace.NonemptyCompacts α) => s.carrier, coe_injective' := ⋯ }
See Note [custom simps projection].
Equations
Instances For
Reinterpret a nonempty compact as a closed set.
Equations
- s.toCloseds = { carrier := ↑s, closed' := ⋯ }
Instances For
Equations
- TopologicalSpace.NonemptyCompacts.instSup = { sup := fun (s t : TopologicalSpace.NonemptyCompacts α) => { toCompacts := s.toCompacts ⊔ t.toCompacts, nonempty' := ⋯ } }
Equations
- TopologicalSpace.NonemptyCompacts.instSemilatticeSup = Function.Injective.semilatticeSup SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.NonemptyCompacts.instOrderTopOfCompactSpaceOfNonempty = OrderTop.lift SetLike.coe ⋯ ⋯
In an inhabited space, the type of nonempty compact subsets is also inhabited, with default element the singleton set containing the default element.
Equations
- TopologicalSpace.NonemptyCompacts.instInhabited = { default := { carrier := {default}, isCompact' := ⋯, nonempty' := ⋯ } }
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
The product of two TopologicalSpace.NonemptyCompacts
, as a TopologicalSpace.NonemptyCompacts
in the product space.
Equations
- K.prod L = { toCompacts := K.prod L.toCompacts, nonempty' := ⋯ }
Instances For
Positive compact sets #
The type of compact sets with nonempty interior of a topological space.
See also TopologicalSpace.Compacts
and TopologicalSpace.NonemptyCompacts
.
- carrier : Set α
- isCompact' : IsCompact self.carrier
- interior_nonempty' : (interior self.carrier).Nonempty
Instances For
Equations
- TopologicalSpace.PositiveCompacts.instSetLike = { coe := fun (s : TopologicalSpace.PositiveCompacts α) => s.carrier, coe_injective' := ⋯ }
See Note [custom simps projection].
Equations
Instances For
Reinterpret a positive compact as a nonempty compact.
Equations
- s.toNonemptyCompacts = { toCompacts := s.toCompacts, nonempty' := ⋯ }
Instances For
Equations
- TopologicalSpace.PositiveCompacts.instSup = { sup := fun (s t : TopologicalSpace.PositiveCompacts α) => { toCompacts := s.toCompacts ⊔ t.toCompacts, interior_nonempty' := ⋯ } }
Equations
- TopologicalSpace.PositiveCompacts.instSemilatticeSup = Function.Injective.semilatticeSup SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.PositiveCompacts.instOrderTopOfCompactSpaceOfNonempty = OrderTop.lift SetLike.coe ⋯ ⋯
The image of a positive compact set under a continuous open map.
Equations
- TopologicalSpace.PositiveCompacts.map f hf hf' K = { toCompacts := TopologicalSpace.Compacts.map f hf K.toCompacts, interior_nonempty' := ⋯ }
Instances For
In a nonempty locally compact space, there exists a compact set with nonempty interior.
Equations
- ⋯ = ⋯
The product of two TopologicalSpace.PositiveCompacts
, as a TopologicalSpace.PositiveCompacts
in the product space.
Equations
- K.prod L = { toCompacts := K.prod L.toCompacts, interior_nonempty' := ⋯ }
Instances For
Compact open sets #
The type of compact open sets of a topological space. This is useful in non Hausdorff contexts, in particular spectral spaces.
Instances For
Equations
- TopologicalSpace.CompactOpens.instSetLike = { coe := fun (s : TopologicalSpace.CompactOpens α) => s.carrier, coe_injective' := ⋯ }
See Note [custom simps projection].
Equations
Instances For
Reinterpret a compact open as an open.
Equations
- s.toOpens = { carrier := ↑s, is_open' := ⋯ }
Instances For
Reinterpret a compact open as a clopen.
Equations
- s.toClopens = { carrier := ↑s, isClopen' := ⋯ }
Instances For
Equations
- TopologicalSpace.CompactOpens.instSup = { sup := fun (s t : TopologicalSpace.CompactOpens α) => { toCompacts := s.toCompacts ⊔ t.toCompacts, isOpen' := ⋯ } }
Equations
- TopologicalSpace.CompactOpens.instSemilatticeSup = Function.Injective.semilatticeSup SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.CompactOpens.instOrderBot = OrderBot.lift SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.CompactOpens.instInf = { inf := fun (U V : TopologicalSpace.CompactOpens α) => { carrier := ↑U ∩ ↑V, isCompact' := ⋯, isOpen' := ⋯ } }
Equations
- TopologicalSpace.CompactOpens.instSemilatticeInf = Function.Injective.semilatticeInf SetLike.coe ⋯ ⋯
Equations
- TopologicalSpace.CompactOpens.instSDiff = { sdiff := fun (s t : TopologicalSpace.CompactOpens α) => { carrier := ↑s \ ↑t, isCompact' := ⋯, isOpen' := ⋯ } }
Equations
- TopologicalSpace.CompactOpens.instGeneralizedBooleanAlgebra = Function.Injective.generalizedBooleanAlgebra SetLike.coe ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- TopologicalSpace.CompactOpens.instBoundedOrder = BoundedOrder.lift SetLike.coe ⋯ ⋯ ⋯
Equations
- TopologicalSpace.CompactOpens.instHasCompl = { compl := fun (s : TopologicalSpace.CompactOpens α) => { carrier := (↑s)ᶜ, isCompact' := ⋯, isOpen' := ⋯ } }
Equations
- TopologicalSpace.CompactOpens.instHImp = { himp := fun (s t : TopologicalSpace.CompactOpens α) => { carrier := ↑s ⇨ ↑t, isCompact' := ⋯, isOpen' := ⋯ } }
Equations
- TopologicalSpace.CompactOpens.instBooleanAlgebra = Function.Injective.booleanAlgebra SetLike.coe ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
The image of a compact open under a continuous open map.
Equations
- TopologicalSpace.CompactOpens.map f hf hf' s = { toCompacts := TopologicalSpace.Compacts.map f hf s.toCompacts, isOpen' := ⋯ }
Instances For
The product of two TopologicalSpace.CompactOpens
, as a TopologicalSpace.CompactOpens
in the
product space.
Equations
- K.prod L = { toCompacts := K.prod L.toCompacts, isOpen' := ⋯ }