Documentation

Mathlib.Topology.Algebra.OpenSubgroup

Open subgroups of a topological groups #

This files builds the lattice OpenSubgroup G of open subgroups in a topological group G, and its additive version OpenAddSubgroup. This lattice has a top element, the subgroup of all elements, but no bottom element in general. The trivial subgroup which is the natural candidate bottom has no reason to be open (this happens only in discrete groups).

Note that this notion is especially relevant in a non-archimedean context, for instance for p-adic groups.

Main declarations #

TODO #

The type of open subgroups of a topological additive group.

    Instances For
      theorem OpenAddSubgroup.isOpen' {G : Type u_1} [AddGroup G] [TopologicalSpace G] (self : OpenAddSubgroup G) :
      IsOpen (↑self).carrier
      structure OpenSubgroup (G : Type u_1) [Group G] [TopologicalSpace G] extends Subgroup , Submonoid , Subsemigroup :
      Type u_1

      The type of open subgroups of a topological group.

        Instances For
          theorem OpenSubgroup.isOpen' {G : Type u_1} [Group G] [TopologicalSpace G] (self : OpenSubgroup G) :
          IsOpen (↑self).carrier
          Equations
          • OpenSubgroup.hasCoeSubgroup = { coe := OpenSubgroup.toSubgroup }
          Equations
          • OpenAddSubgroup.hasCoeAddSubgroup = { coe := OpenAddSubgroup.toAddSubgroup }
          theorem OpenSubgroup.toSubgroup_injective {G : Type u_1} [Group G] [TopologicalSpace G] :
          Function.Injective OpenSubgroup.toSubgroup
          theorem OpenAddSubgroup.toAddSubgroup_injective {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
          Function.Injective OpenAddSubgroup.toAddSubgroup
          Equations
          • OpenSubgroup.instSetLike = { coe := fun (U : OpenSubgroup G) => U, coe_injective' := }
          Equations
          • OpenAddSubgroup.instSetLike = { coe := fun (U : OpenAddSubgroup G) => U, coe_injective' := }

          Coercion from OpenSubgroup G to Opens G.

          Equations
          • U = { carrier := U, is_open' := }
          Instances For

            Coercion from OpenAddSubgroup G to Opens G.

            Equations
            • U = { carrier := U, is_open' := }
            Instances For
              Equations
              • OpenSubgroup.hasCoeOpens = { coe := OpenSubgroup.toOpens }
              Equations
              • OpenAddSubgroup.hasCoeOpens = { coe := OpenAddSubgroup.toOpens }
              @[simp]
              theorem OpenSubgroup.coe_toOpens {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} :
              U = U
              @[simp]
              theorem OpenAddSubgroup.coe_toOpens {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} :
              U = U
              @[simp]
              theorem OpenSubgroup.coe_toSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} :
              U = U
              @[simp]
              theorem OpenAddSubgroup.coe_toAddSubgroup {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} :
              U = U
              @[simp]
              theorem OpenSubgroup.mem_toOpens {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {g : G} :
              g U g U
              @[simp]
              theorem OpenAddSubgroup.mem_toOpens {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {g : G} :
              g U g U
              @[simp]
              theorem OpenSubgroup.mem_toSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {g : G} :
              g U g U
              @[simp]
              theorem OpenAddSubgroup.mem_toAddSubgroup {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {g : G} :
              g U g U
              theorem OpenAddSubgroup.ext {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} (h : ∀ (x : G), x U x V) :
              U = V
              theorem OpenSubgroup.ext {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} (h : ∀ (x : G), x U x V) :
              U = V
              Equations
              • OpenSubgroup.instTop = { top := { toSubgroup := , isOpen' := } }
              Equations
              • OpenAddSubgroup.instTop = { top := { toAddSubgroup := , isOpen' := } }
              @[simp]
              theorem OpenSubgroup.mem_top {G : Type u_1} [Group G] [TopologicalSpace G] (x : G) :
              @[simp]
              theorem OpenAddSubgroup.mem_top {G : Type u_1} [AddGroup G] [TopologicalSpace G] (x : G) :
              @[simp]
              theorem OpenSubgroup.coe_top {G : Type u_1} [Group G] [TopologicalSpace G] :
              = Set.univ
              @[simp]
              theorem OpenAddSubgroup.coe_top {G : Type u_1} [AddGroup G] [TopologicalSpace G] :
              = Set.univ
              @[simp]
              @[simp]
              Equations
              • OpenSubgroup.instInhabited = { default := }
              Equations
              • OpenAddSubgroup.instInhabited = { default := }
              def OpenSubgroup.prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :

              The product of two open subgroups as an open subgroup of the product group.

              Equations
              • U.prod V = { toSubgroup := (↑U).prod V, isOpen' := }
              Instances For

                The product of two open subgroups as an open subgroup of the product group.

                Equations
                • U.sum V = { toAddSubgroup := (↑U).prod V, isOpen' := }
                Instances For
                  @[simp]
                  theorem OpenSubgroup.coe_prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :
                  (U.prod V) = U ×ˢ V
                  @[simp]
                  theorem OpenAddSubgroup.coe_sum {G : Type u_1} [AddGroup G] [TopologicalSpace G] {H : Type u_2} [AddGroup H] [TopologicalSpace H] (U : OpenAddSubgroup G) (V : OpenAddSubgroup H) :
                  (U.sum V) = U ×ˢ V
                  @[simp]
                  theorem OpenSubgroup.toSubgroup_prod {G : Type u_1} [Group G] [TopologicalSpace G] {H : Type u_2} [Group H] [TopologicalSpace H] (U : OpenSubgroup G) (V : OpenSubgroup H) :
                  (U.prod V) = (↑U).prod V
                  @[simp]
                  theorem OpenAddSubgroup.toAddSubgroup_sum {G : Type u_1} [AddGroup G] [TopologicalSpace G] {H : Type u_2} [AddGroup H] [TopologicalSpace H] (U : OpenAddSubgroup G) (V : OpenAddSubgroup H) :
                  (U.sum V) = (↑U).prod V
                  Equations
                  • OpenSubgroup.instInfOpenSubgroup = { inf := fun (U V : OpenSubgroup G) => { toSubgroup := U V, isOpen' := } }
                  Equations
                  • OpenAddSubgroup.instInfOpenAddSubgroup = { inf := fun (U V : OpenAddSubgroup G) => { toAddSubgroup := U V, isOpen' := } }
                  @[simp]
                  theorem OpenSubgroup.coe_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenAddSubgroup.coe_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenSubgroup.toSubgroup_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenAddSubgroup.toAddSubgroup_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenSubgroup.toOpens_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenAddSubgroup.toOpens_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} :
                  (U V) = U V
                  @[simp]
                  theorem OpenSubgroup.mem_inf {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} {x : G} :
                  x U V x U x V
                  @[simp]
                  theorem OpenAddSubgroup.mem_inf {G : Type u_1} [AddGroup G] [TopologicalSpace G] {U : OpenAddSubgroup G} {V : OpenAddSubgroup G} {x : G} :
                  x U V x U x V
                  Equations
                  • OpenSubgroup.instPartialOrderOpenSubgroup = inferInstance
                  Equations
                  • OpenAddSubgroup.instPartialOrderOpenAddSubgroup = inferInstance
                  Equations
                  Equations
                  Equations
                  Equations
                  @[simp]
                  theorem OpenSubgroup.toSubgroup_le {G : Type u_1} [Group G] [TopologicalSpace G] {U : OpenSubgroup G} {V : OpenSubgroup G} :
                  U V U V
                  @[simp]
                  def OpenSubgroup.comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (f : G →* N) (hf : Continuous f) (H : OpenSubgroup N) :

                  The preimage of an OpenSubgroup along a continuous Monoid homomorphism is an OpenSubgroup.

                  Equations
                  Instances For
                    def OpenAddSubgroup.comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (f : G →+ N) (hf : Continuous f) (H : OpenAddSubgroup N) :

                    The preimage of an OpenAddSubgroup along a continuous AddMonoid homomorphism is an OpenAddSubgroup.

                    Equations
                    Instances For
                      @[simp]
                      theorem OpenSubgroup.coe_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (H : OpenSubgroup N) (f : G →* N) (hf : Continuous f) :
                      (OpenSubgroup.comap f hf H) = f ⁻¹' H
                      @[simp]
                      theorem OpenAddSubgroup.coe_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (H : OpenAddSubgroup N) (f : G →+ N) (hf : Continuous f) :
                      (OpenAddSubgroup.comap f hf H) = f ⁻¹' H
                      @[simp]
                      theorem OpenSubgroup.toSubgroup_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] (H : OpenSubgroup N) (f : G →* N) (hf : Continuous f) :
                      @[simp]
                      theorem OpenAddSubgroup.toAddSubgroup_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] (H : OpenAddSubgroup N) (f : G →+ N) (hf : Continuous f) :
                      @[simp]
                      theorem OpenSubgroup.mem_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] {H : OpenSubgroup N} {f : G →* N} {hf : Continuous f} {x : G} :
                      x OpenSubgroup.comap f hf H f x H
                      @[simp]
                      theorem OpenAddSubgroup.mem_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] {H : OpenAddSubgroup N} {f : G →+ N} {hf : Continuous f} {x : G} :
                      theorem OpenSubgroup.comap_comap {G : Type u_1} [Group G] [TopologicalSpace G] {N : Type u_2} [Group N] [TopologicalSpace N] {P : Type u_3} [Group P] [TopologicalSpace P] (K : OpenSubgroup P) (f₂ : N →* P) (hf₂ : Continuous f₂) (f₁ : G →* N) (hf₁ : Continuous f₁) :
                      OpenSubgroup.comap f₁ hf₁ (OpenSubgroup.comap f₂ hf₂ K) = OpenSubgroup.comap (f₂.comp f₁) K
                      theorem OpenAddSubgroup.comap_comap {G : Type u_1} [AddGroup G] [TopologicalSpace G] {N : Type u_2} [AddGroup N] [TopologicalSpace N] {P : Type u_3} [AddGroup P] [TopologicalSpace P] (K : OpenAddSubgroup P) (f₂ : N →+ P) (hf₂ : Continuous f₂) (f₁ : G →+ N) (hf₁ : Continuous f₁) :
                      OpenAddSubgroup.comap f₁ hf₁ (OpenAddSubgroup.comap f₂ hf₂ K) = OpenAddSubgroup.comap (f₂.comp f₁) K
                      theorem Subgroup.isOpen_of_mem_nhds {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) {g : G} (hg : H nhds g) :
                      IsOpen H
                      theorem AddSubgroup.isOpen_of_mem_nhds {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (H : AddSubgroup G) {g : G} (hg : H nhds g) :
                      IsOpen H
                      theorem Subgroup.isOpen_mono {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] {H₁ : Subgroup G} {H₂ : Subgroup G} (h : H₁ H₂) (h₁ : IsOpen H₁) :
                      IsOpen H₂
                      theorem AddSubgroup.isOpen_mono {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] {H₁ : AddSubgroup G} {H₂ : AddSubgroup G} (h : H₁ H₂) (h₁ : IsOpen H₁) :
                      IsOpen H₂
                      theorem Subgroup.isOpen_of_openSubgroup {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) {U : OpenSubgroup G} (h : U H) :
                      IsOpen H
                      theorem Subgroup.isOpen_of_one_mem_interior {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (H : Subgroup G) (h_1_int : 1 interior H) :
                      IsOpen H

                      If a subgroup of a topological group has 1 in its interior, then it is open.

                      If a subgroup of an additive topological group has 0 in its interior, then it is open.

                      theorem Subgroup.isClosed_of_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : Subgroup G) (h : IsOpen U) :
                      theorem Subgroup.subgroupOf_isOpen {G : Type u_1} [Group G] [TopologicalSpace G] (U : Subgroup G) (K : Subgroup G) (h : IsOpen K) :
                      IsOpen (K.subgroupOf U)
                      theorem AddSubgroup.addSubgroupOf_isOpen {G : Type u_1} [AddGroup G] [TopologicalSpace G] (U : AddSubgroup G) (K : AddSubgroup G) (h : IsOpen K) :
                      IsOpen (K.addSubgroupOf U)
                      theorem Subgroup.quotient_finite_of_isOpen' {G : Type u_1} [Group G] [TopologicalSpace G] [TopologicalGroup G] [CompactSpace G] (U : Subgroup G) (K : Subgroup U) (hUopen : IsOpen U) (hKopen : IsOpen K) :
                      Finite (U K)
                      theorem AddSubgroup.quotient_finite_of_isOpen' {G : Type u_1} [AddGroup G] [TopologicalSpace G] [TopologicalAddGroup G] [CompactSpace G] (U : AddSubgroup G) (K : AddSubgroup U) (hUopen : IsOpen U) (hKopen : IsOpen K) :
                      Finite (U K)
                      Equations
                      • OpenSubgroup.instSup = { sup := fun (U V : OpenSubgroup G) => { toSubgroup := U V, isOpen' := } }
                      Equations
                      • OpenAddSubgroup.instSup = { sup := fun (U V : OpenAddSubgroup G) => { toAddSubgroup := U V, isOpen' := } }
                      @[simp]
                      theorem OpenSubgroup.toSubgroup_sup {G : Type u_1} [Group G] [TopologicalSpace G] [ContinuousMul G] (U : OpenSubgroup G) (V : OpenSubgroup G) :
                      (U V) = U V
                      @[simp]
                      theorem OpenAddSubgroup.toAddSubgroup_sup {G : Type u_1} [AddGroup G] [TopologicalSpace G] [ContinuousAdd G] (U : OpenAddSubgroup G) (V : OpenAddSubgroup G) :
                      (U V) = U V
                      Equations
                      Equations
                      theorem Submodule.isOpen_mono {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [TopologicalSpace M] [TopologicalAddGroup M] [Module R M] {U : Submodule R M} {P : Submodule R M} (h : U P) (hU : IsOpen U) :
                      IsOpen P
                      theorem Ideal.isOpen_of_isOpen_subideal {R : Type u_1} [CommRing R] [TopologicalSpace R] [TopologicalRing R] {U : Ideal R} {I : Ideal R} (h : U I) (hU : IsOpen U) :
                      IsOpen I

                      Open normal subgroups of a topological group #

                      This section builds the lattice OpenNormalSubgroup G of open subgroups in a topological group G, and its additive version OpenNormalAddSubgroup.

                      The type of open normal subgroups of a topological group.

                        Instances For
                          theorem OpenNormalSubgroup.ext {G : Type u} :
                          ∀ {inst : Group G} {inst_1 : TopologicalSpace G} {x y : OpenNormalSubgroup G}, (↑x.toOpenSubgroup).carrier = (↑y.toOpenSubgroup).carrierx = y
                          theorem OpenNormalSubgroup.isNormal' {G : Type u} [Group G] [TopologicalSpace G] (self : OpenNormalSubgroup G) :
                          (↑self.toOpenSubgroup).Normal

                          The type of open normal subgroups of a topological additive group.

                            Instances For
                              theorem OpenNormalAddSubgroup.ext {G : Type u} :
                              ∀ {inst : AddGroup G} {inst_1 : TopologicalSpace G} {x y : OpenNormalAddSubgroup G}, (↑x.toOpenAddSubgroup).carrier = (↑y.toOpenAddSubgroup).carrierx = y
                              theorem OpenNormalAddSubgroup.isNormal' {G : Type u} [AddGroup G] [TopologicalSpace G] (self : OpenNormalAddSubgroup G) :
                              (↑self.toOpenAddSubgroup).Normal
                              instance OpenNormalSubgroup.instNormal {G : Type u} [Group G] [TopologicalSpace G] (H : OpenNormalSubgroup G) :
                              (↑H.toOpenSubgroup).Normal
                              Equations
                              • =
                              instance OpenNormalAddSubgroup.instNormal {G : Type u} [AddGroup G] [TopologicalSpace G] (H : OpenNormalAddSubgroup G) :
                              (↑H.toOpenAddSubgroup).Normal
                              Equations
                              • =
                              Equations
                              • OpenNormalSubgroup.instSetLike = { coe := fun (U : OpenNormalSubgroup G) => U.toOpenSubgroup, coe_injective' := }
                              Equations
                              • OpenNormalAddSubgroup.instSetLike = { coe := fun (U : OpenNormalAddSubgroup G) => U.toOpenAddSubgroup, coe_injective' := }
                              Equations
                              • OpenNormalSubgroup.instCoeSubgroup = { coe := fun (H : OpenNormalSubgroup G) => H.toOpenSubgroup }
                              Equations
                              • OpenNormalAddSubgroup.instCoeAddSubgroup = { coe := fun (H : OpenNormalAddSubgroup G) => H.toOpenAddSubgroup }
                              Equations
                              • OpenNormalSubgroup.instPartialOrderOpenNormalSubgroup = inferInstance
                              Equations
                              • OpenNormalAddSubgroup.instPartialOrderOpenNormalAddSubgroup = inferInstance
                              Equations
                              • OpenNormalSubgroup.instInfOpenNormalSubgroup = { inf := fun (U V : OpenNormalSubgroup G) => { toOpenSubgroup := U.toOpenSubgroup V.toOpenSubgroup, isNormal' := } }
                              Equations
                              • OpenNormalAddSubgroup.instInfOpenNormalAddSubgroup = { inf := fun (U V : OpenNormalAddSubgroup G) => { toOpenAddSubgroup := U.toOpenAddSubgroup V.toOpenAddSubgroup, isNormal' := } }
                              Equations
                              Equations
                              Equations
                              • OpenNormalSubgroup.instSupOfContinuousMul = { sup := fun (U V : OpenNormalSubgroup G) => { toOpenSubgroup := U.toOpenSubgroup V.toOpenSubgroup, isNormal' := } }
                              Equations
                              • OpenNormalAddSubgroup.instSupOfContinuousAdd = { sup := fun (U V : OpenNormalAddSubgroup G) => { toOpenAddSubgroup := U.toOpenAddSubgroup V.toOpenAddSubgroup, isNormal' := } }
                              Equations
                              Equations
                              Equations
                              • OpenNormalSubgroup.instLatticeOfContinuousMul = Lattice.mk
                              Equations
                              • OpenNormalAddSubgroup.instLatticeOfContinuousAdd = Lattice.mk

                              Existence of an open subgroup in any clopen neighborhood of the neutral element #

                              This section proves the lemma TopologicalGroup.exist_openSubgroup_sub_clopen_nhd_of_one, which states that in a compact topological group, for any clopen neighborhood of 1, there exists an open subgroup contained within it.

                              structure TopologicalAddGroup.addNegClosureNhd {G : Type u_1} [TopologicalSpace G] (T : Set G) (W : Set G) [AddGroup G] :

                              For a set W, T is a neighborhood of 0 which is open, stable under negation and satisfies T + W ⊆ W.

                              Instances For
                                structure TopologicalGroup.mulInvClosureNhd {G : Type u_1} [TopologicalSpace G] (T : Set G) (W : Set G) [Group G] :

                                For a set W, T is a neighborhood of 1 which is open, statble under inverse and satisfies T * W ⊆ W.

                                Instances For
                                  theorem TopologicalGroup.exist_mul_closure_nhd {G : Type u_1} [TopologicalSpace G] [Group G] [TopologicalGroup G] [CompactSpace G] {W : Set G} (WClopen : IsClopen W) :
                                  Tnhds 1, W * T W
                                  theorem TopologicalAddGroup.exist_add_closure_nhd {G : Type u_1} [TopologicalSpace G] [AddGroup G] [TopologicalAddGroup G] [CompactSpace G] {W : Set G} (WClopen : IsClopen W) :
                                  Tnhds 0, W + T W
                                  theorem TopologicalGroup.exist_openSubgroup_sub_clopen_nhd_of_one {G : Type u_2} [Group G] [TopologicalSpace G] [TopologicalGroup G] [CompactSpace G] {W : Set G} (WClopen : IsClopen W) (einW : 1 W) :
                                  ∃ (H : OpenSubgroup G), H W