Documentation

Mathlib.Tactic.FunProp.Differentiable

funProp minimal setup for Differentiable(At/On) #

theorem differentiableOn_id' {K : Type u_1} [NontriviallyNormedField K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] {s : Set E} :
DifferentiableOn K (fun (x : E) => x) s
theorem Differentiable.comp' {K : Type u_1} [NontriviallyNormedField K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace K G] {f : EF} {g : FG} (hg : Differentiable K g) (hf : Differentiable K f) :
Differentiable K fun (x : E) => g (f x)
theorem DifferentiableAt.comp' {K : Type u_1} [NontriviallyNormedField K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace K G] {x : E} {f : EF} {g : FG} (hg : DifferentiableAt K g (f x)) (hf : DifferentiableAt K f x) :
DifferentiableAt K (fun (x : E) => g (f x)) x
theorem DifferentiableOn.comp' {K : Type u_1} [NontriviallyNormedField K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace K G] {f : EF} {s : Set E} {g : FG} {t : Set F} (hg : DifferentiableOn K g t) (hf : DifferentiableOn K f s) (st : Set.MapsTo f s t) :
DifferentiableOn K (fun (x : E) => g (f x)) s