Derivatives on pi-types. #
theorem
hasFDerivAt_update
{𝕜 : Type u_1}
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
[NontriviallyNormedField 𝕜]
{E : ι → Type u_3}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
(x : (i : ι) → E i)
{i : ι}
(y : E i)
:
HasFDerivAt (Function.update x i) (ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i)))) y
theorem
hasFDerivAt_single
{𝕜 : Type u_1}
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
[NontriviallyNormedField 𝕜]
{E : ι → Type u_3}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
{i : ι}
(y : E i)
:
HasFDerivAt (Pi.single i) (ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i)))) y
theorem
fderiv_update
{𝕜 : Type u_1}
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
[NontriviallyNormedField 𝕜]
{E : ι → Type u_3}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
(x : (i : ι) → E i)
{i : ι}
(y : E i)
:
fderiv 𝕜 (Function.update x i) y = ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i)))
theorem
fderiv_single
{𝕜 : Type u_1}
{ι : Type u_2}
[DecidableEq ι]
[Fintype ι]
[NontriviallyNormedField 𝕜]
{E : ι → Type u_3}
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
{i : ι}
(y : E i)
:
fderiv 𝕜 (Pi.single i) y = ContinuousLinearMap.pi (Pi.single i (ContinuousLinearMap.id 𝕜 (E i)))