Documentation

Mathlib.Analysis.Calculus.FDeriv.Pi

Derivatives on pi-types. #

theorem hasFDerivAt_update {𝕜 : Type u_1} {ι : Type u_2} [DecidableEq ι] [Fintype ι] [NontriviallyNormedField 𝕜] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] (x : (i : ι) → E i) {i : ι} (y : E i) :
theorem hasFDerivAt_single {𝕜 : Type u_1} {ι : Type u_2} [DecidableEq ι] [Fintype ι] [NontriviallyNormedField 𝕜] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] {i : ι} (y : E i) :
theorem fderiv_update {𝕜 : Type u_1} {ι : Type u_2} [DecidableEq ι] [Fintype ι] [NontriviallyNormedField 𝕜] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] (x : (i : ι) → E i) {i : ι} (y : E i) :
theorem fderiv_single {𝕜 : Type u_1} {ι : Type u_2} [DecidableEq ι] [Fintype ι] [NontriviallyNormedField 𝕜] {E : ιType u_3} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] {i : ι} (y : E i) :