Documentation

Mathlib.RingTheory.SimpleModule.WedderburnArtin

Wedderburn–Artin Theorem #

Main results #

A simple ring is semisimple iff it is Artinian, iff it has a minimal left ideal.

The Wedderburn–Artin Theorem: an Artinian simple ring is isomorphic to a matrix ring over the opposite of the endomorphism ring of its simple module.

theorem IsSimpleRing.exists_ringEquiv_matrix_divisionRing (R : Type u) [Ring R] [IsSimpleRing R] [IsArtinianRing R] :
∃ (n : ) (_ : NeZero n) (D : Type u) (x : DivisionRing D), Nonempty (R ≃+* Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem: an Artinian simple ring is isomorphic to a matrix ring over a division ring.

theorem IsSimpleRing.exists_algEquiv_matrix_end_mulOpposite (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSimpleRing R] [IsArtinianRing R] :
∃ (n : ) (_ : NeZero n) (I : Ideal R) (_ : IsSimpleModule R I), Nonempty (R ≃ₐ[R₀] Matrix (Fin n) (Fin n) (Module.End R I)ᵐᵒᵖ)

The Wedderburn–Artin Theorem, algebra form: an Artinian simple algebra is isomorphic to a matrix algebra over the opposite of the endomorphism algebra of its simple module.

theorem IsSimpleRing.exists_algEquiv_matrix_divisionRing (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSimpleRing R] [IsArtinianRing R] :
∃ (n : ) (_ : NeZero n) (D : Type u) (x : DivisionRing D) (x_1 : Algebra R₀ D), Nonempty (R ≃ₐ[R₀] Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem, algebra form: an Artinian simple algebra is isomorphic to a matrix algebra over a division algebra.

theorem IsSimpleRing.exists_algEquiv_matrix_divisionRing_finite (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSimpleRing R] [IsArtinianRing R] [Module.Finite R₀ R] :
∃ (n : ) (_ : NeZero n) (D : Type u) (x : DivisionRing D) (x_1 : Algebra R₀ D) (_ : Module.Finite R₀ D), Nonempty (R ≃ₐ[R₀] Matrix (Fin n) (Fin n) D)

The Wedderburn–Artin Theorem, algebra form, finite case: a finite Artinian simple algebra is isomorphic to a matrix algebra over a finite division algebra.

theorem IsSemisimpleModule.exists_end_algEquiv (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] (M : Type u_2) [AddCommGroup M] [Module R₀ M] [Module R M] [IsScalarTower R₀ R M] [IsSemisimpleModule R M] [Module.Finite R M] :
∃ (n : ) (S : Fin nSubmodule R M) (d : Fin n), (∀ (i : Fin n), IsSimpleModule R (S i)) (∀ (i : Fin n), NeZero (d i)) Nonempty (Module.End R M ≃ₐ[R₀] (i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (Module.End R (S i)))
theorem IsSemisimpleModule.exists_end_ringEquiv (R : Type u) [Ring R] (M : Type u_2) [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] [Module.Finite R M] :
∃ (n : ) (S : Fin nSubmodule R M) (d : Fin n), (∀ (i : Fin n), IsSimpleModule R (S i)) (∀ (i : Fin n), NeZero (d i)) Nonempty (Module.End R M ≃+* ((i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (Module.End R (S i))))
theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_end_mulOpposite (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSemisimpleRing R] :
∃ (n : ) (S : Fin nIdeal R) (d : Fin n), (∀ (i : Fin n), IsSimpleModule R (S i)) (∀ (i : Fin n), NeZero (d i)) Nonempty (R ≃ₐ[R₀] (i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (Module.End R (S i))ᵐᵒᵖ)

The Wedderburn–Artin Theorem, algebra form: a semisimple algebra is isomorphic to a product of matrix algebras over the opposite of the endomorphism algebras of its simple modules.

theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_divisionRing (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSemisimpleRing R] :
∃ (n : ) (D : Fin nType u) (d : Fin n) (x : (i : Fin n) → DivisionRing (D i)) (x_1 : (i : Fin n) → Algebra R₀ (D i)), (∀ (i : Fin n), NeZero (d i)) Nonempty (R ≃ₐ[R₀] (i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (D i))

The Wedderburn–Artin Theorem, algebra form: a semisimple algebra is isomorphic to a product of matrix algebras over division algebras.

theorem IsSemisimpleRing.exists_algEquiv_pi_matrix_divisionRing_finite (R₀ : Type u_1) (R : Type u) [CommSemiring R₀] [Ring R] [Algebra R₀ R] [IsSemisimpleRing R] [Module.Finite R₀ R] :
∃ (n : ) (D : Fin nType u) (d : Fin n) (x : (i : Fin n) → DivisionRing (D i)) (x_1 : (i : Fin n) → Algebra R₀ (D i)) (_ : ∀ (i : Fin n), Module.Finite R₀ (D i)), (∀ (i : Fin n), NeZero (d i)) Nonempty (R ≃ₐ[R₀] (i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (D i))

The Wedderburn–Artin Theorem, algebra form, finite case: a finite semisimple algebra is isomorphic to a product of matrix algebras over finite division algebras.

theorem IsSemisimpleRing.exists_ringEquiv_pi_matrix_end_mulOpposite (R : Type u) [Ring R] [IsSemisimpleRing R] :
∃ (n : ) (D : Fin nIdeal R) (d : Fin n), (∀ (i : Fin n), IsSimpleModule R (D i)) (∀ (i : Fin n), NeZero (d i)) Nonempty (R ≃+* ((i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (Module.End R (D i))ᵐᵒᵖ))

The Wedderburn–Artin Theorem: a semisimple ring is isomorphic to a product of matrix rings over the opposite of the endomorphism rings of its simple modules.

theorem IsSemisimpleRing.exists_ringEquiv_pi_matrix_divisionRing (R : Type u) [Ring R] [IsSemisimpleRing R] :
∃ (n : ) (D : Fin nType u) (d : Fin n) (x : (i : Fin n) → DivisionRing (D i)), (∀ (i : Fin n), NeZero (d i)) Nonempty (R ≃+* ((i : Fin n) → Matrix (Fin (d i)) (Fin (d i)) (D i)))

The Wedderburn–Artin Theorem: a semisimple ring is isomorphic to a product of matrix rings over division rings.