Documentation

Mathlib.RingTheory.FiniteLength

Modules of finite length #

We define modules of finite length (IsFiniteLength) to be finite iterated extensions of simple modules, and show that a module is of finite length iff it is both Noetherian and Artinian, iff it admits a composition series. We do not make IsFiniteLength a class, instead we use [IsNoetherian R M] [IsArtinian R M].

Tag #

Finite length, Composition series

inductive IsFiniteLength (R : Type u_1) [Ring R] (M : Type u) [AddCommGroup M] [Module R M] :

A module of finite length is either trivial or a simple extension of a module known to be of finite length.

Instances For
    theorem LinearEquiv.isFiniteLength {R : Type u_1} [Ring R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (e : M ≃ₗ[R] N) (h : IsFiniteLength R M) :
    theorem IsSemisimpleModule.finite_tfae {R : Type u_1} [Ring R] {M : Type u_2} [AddCommGroup M] [Module R M] [IsSemisimpleModule R M] :
    [Module.Finite R M, IsNoetherian R M, IsArtinian R M, IsFiniteLength R M, ∃ (s : Set (Submodule R M)), s.Finite CompleteLattice.SetIndependent s sSup s = ms, IsSimpleModule R m].TFAE
    Equations
    • =