Etale algebras over fields #
Main results #
Let K
be a field, A
be a K
-algebra and L
be a field extension of K
.
Algebra.FormallyEtale.of_isSeparable
: IfL
is separable overK
, thenL
is formally étale overK
.Algebra.FormallyEtale.iff_isSeparable
: IfL
is (essentially) of finite type overK
, thenL/K
is étale iffL/K
is separable.Algebra.FormallyEtale.iff_exists_algEquiv_prod
: IfA
is (essentially) of finite type overK
, thenA/K
is étale iffA
is a finite product of separable field extensions.Algebra.Etale.iff_exists_algEquiv_prod
:A/K
is étale iffA
is a finite product of finite separable field extensions.
References #
- [B. Iversen, Generic Local Structure of the Morphisms in Commutative Algebra][iversen]
theorem
Algebra.FormallyEtale.of_isSeparable_aux
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
[Algebra.EssFiniteType K L]
:
This is a weaker version of of_isSeparable
that additionally assumes EssFiniteType K L
.
Use that instead.
This is Iversen Corollary II.5.3.
theorem
Algebra.FormallyEtale.of_isSeparable
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
:
theorem
Algebra.FormallyEtale.iff_isSeparable
(K L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.EssFiniteType K L]
:
theorem
Algebra.FormallyEtale.iff_exists_algEquiv_prod
(K A : Type u)
[Field K]
[CommRing A]
[Algebra K A]
[Algebra.EssFiniteType K A]
:
Algebra.FormallyEtale K A ↔ ∃ (I : Type u) (_ : Finite I) (Ai : I → Type u) (x : (i : I) → Field (Ai i)) (x_1 : (i : I) → Algebra K (Ai i)) (x_2 :
A ≃ₐ[K] (i : I) → Ai i), ∀ (i : I), Algebra.IsSeparable K (Ai i)
If A
is an essentially of finite type algebra over a field K
, then A
is formally étale
over K
if and only if A
is a finite product of separable field extensions.
theorem
Algebra.Etale.iff_exists_algEquiv_prod
(K A : Type u)
[Field K]
[CommRing A]
[Algebra K A]
:
Algebra.Etale K A ↔ ∃ (I : Type u) (_ : Finite I) (Ai : I → Type u) (x : (i : I) → Field (Ai i)) (x_1 : (i : I) → Algebra K (Ai i)) (x_2 :
A ≃ₐ[K] (i : I) → Ai i), ∀ (i : I), Module.Finite K (Ai i) ∧ Algebra.IsSeparable K (Ai i)
A
is étale over a field K
if and only if
A
is a finite product of finite separable field extensions.