Etale algebras over fields #
Main results #
Let K
be a field, A
be a K
-algebra and L
be a field extension of K
.
Algebra.FormallyEtale.of_isSeparable
: IfL
is separable overK
, thenL
is formally etale overK
.Algebra.FormallyEtale.iff_isSeparable
: IfL
is (essentially) of finite type overK
, thenL/K
is etale iffL/K
is separable.
References #
- [B. Iversen, Generic Local Structure of the Morphisms in Commutative Algebra][iversen]
theorem
Algebra.FormallyEtale.of_isSeparable_aux
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
[Algebra.EssFiniteType K L]
:
This is a weaker version of of_isSeparable
that additionally assumes EssFiniteType K L
.
Use that instead.
This is Iversen Corollary II.5.3.
theorem
Algebra.FormallyEtale.of_isSeparable
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.IsSeparable K L]
:
theorem
Algebra.FormallyEtale.iff_isSeparable
(K : Type u)
(L : Type u)
[Field K]
[Field L]
[Algebra K L]
[Algebra.EssFiniteType K L]
: