Documentation

Mathlib.RingTheory.Etale.Field

Etale algebras over fields #

Main results #

Let K be a field, A be a K-algebra and L be a field extension of K.

References #

This is a weaker version of of_isSeparable that additionally assumes EssFiniteType K L. Use that instead.

This is Iversen Corollary II.5.3.

theorem Algebra.FormallyEtale.iff_exists_algEquiv_prod (K A : Type u) [Field K] [CommRing A] [Algebra K A] [Algebra.EssFiniteType K A] :
Algebra.FormallyEtale K A ∃ (I : Type u) (_ : Finite I) (Ai : IType u) (x : (i : I) → Field (Ai i)) (x_1 : (i : I) → Algebra K (Ai i)) (x_2 : A ≃ₐ[K] (i : I) → Ai i), ∀ (i : I), Algebra.IsSeparable K (Ai i)

If A is an essentially of finite type algebra over a field K, then A is formally étale over K if and only if A is a finite product of separable field extensions.

theorem Algebra.Etale.iff_exists_algEquiv_prod (K A : Type u) [Field K] [CommRing A] [Algebra K A] :
Algebra.Etale K A ∃ (I : Type u) (_ : Finite I) (Ai : IType u) (x : (i : I) → Field (Ai i)) (x_1 : (i : I) → Algebra K (Ai i)) (x_2 : A ≃ₐ[K] (i : I) → Ai i), ∀ (i : I), Module.Finite K (Ai i) Algebra.IsSeparable K (Ai i)

A is étale over a field K if and only if A is a finite product of finite separable field extensions.