Documentation

Mathlib.Probability.Kernel.MeasurableIntegral

Measurability of the integral against a kernel #

The Bochner integral of a strongly measurable function against a kernel is strongly measurable.

Main statements #

theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_right' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace E] ⦃f : α × βE (hf : MeasureTheory.StronglyMeasurable f) :
MeasureTheory.StronglyMeasurable fun (x : α) => ∫ (y : β), f (x, y)κ x
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_right'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {η : ProbabilityTheory.Kernel (α × β) γ} {a : α} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel η] [NormedSpace E] {f : β × γE} (hf : MeasureTheory.StronglyMeasurable f) :
MeasureTheory.StronglyMeasurable fun (x : β) => ∫ (y : γ), f (x, y)η (a, x)
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_left' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel κ] [NormedSpace E] ⦃f : β × αE (hf : MeasureTheory.StronglyMeasurable f) :
MeasureTheory.StronglyMeasurable fun (y : α) => ∫ (x : β), f (x, y)κ y
theorem MeasureTheory.StronglyMeasurable.integral_kernel_prod_left'' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {mγ : MeasurableSpace γ} {η : ProbabilityTheory.Kernel (α × β) γ} {a : α} {E : Type u_4} [NormedAddCommGroup E] [ProbabilityTheory.IsSFiniteKernel η] [NormedSpace E] {f : γ × βE} (hf : MeasureTheory.StronglyMeasurable f) :
MeasureTheory.StronglyMeasurable fun (y : β) => ∫ (x : γ), f (x, y)η (a, y)