Documentation

Mathlib.NumberTheory.Padics.MahlerBasis

The Mahler basis of continuous functions #

In this file we introduce the Mahler basis function mahler k, for k : ℕ, which is the unique continuous map ℤ_[p] → ℚ_[p] agreeing with n ↦ n.choose k for n ∈ ℕ.

In future PR's, we will show that these functions give a Banach basis for the space of continuous maps ℤ_[p] → ℚ_[p].

References #

theorem PadicInt.norm_ascPochhammer_le {p : } [hp : Fact (Nat.Prime p)] (k : ) (x : ℤ_[p]) :

Bound for norms of ascending Pochhammer symbols.

noncomputable instance PadicInt.instBinomialRing {p : } [hp : Fact (Nat.Prime p)] :

The p-adic integers are a binomial ring, i.e. a ring where binomial coefficients make sense.

Equations
  • One or more equations did not get rendered due to their size.
theorem PadicInt.continuous_choose {p : } [hp : Fact (Nat.Prime p)] (k : ) :
Continuous fun (x : ℤ_[p]) => Ring.choose x k
noncomputable def mahler {p : } [hp : Fact (Nat.Prime p)] (k : ) :

The k-th Mahler basis function, i.e. the unique continuous function ℤ_[p] → ℚ_[p] agreeing with n ↦ n.choose k for n ∈ ℕ. See [colmez2010], §1.2.1.

Equations
Instances For
    theorem mahler_apply {p : } [hp : Fact (Nat.Prime p)] (k : ) (x : ℤ_[p]) :
    (mahler k) x = (Ring.choose x k)
    theorem mahler_natCast_eq {p : } [hp : Fact (Nat.Prime p)] (k : ) (n : ) :
    (mahler k) n = (n.choose k)

    The function mahler k extends n ↦ n.choose k on .

    @[simp]
    theorem norm_mahler_eq {p : } [hp : Fact (Nat.Prime p)] (k : ) :

    The uniform norm of the k-th Mahler basis function is 1, for every k.