House of an algebraic number #
This file defines the house of an algebraic number α
, which is
the largest of the modulus of its conjugates.
References #
- [D. Marcus, Number Fields][marcus1977number]
- [Hua, L.-K., Introduction to number theory][hua1982house]
Tagshouse #
number field, algebraic number, house
The house of an algebraic number as the norm of its image by the canonical embedding.
Equations
Instances For
theorem
NumberField.house_eq_sup'
{K : Type u_1}
[Field K]
[NumberField K]
(α : K)
:
NumberField.house α = ↑(Finset.univ.sup' ⋯ fun (φ : K →+* ℂ) => ‖φ α‖₊)
The house is the largest of the modulus of the conjugates of an algebraic number.
theorem
NumberField.house_sum_le_sum_house
{K : Type u_1}
[Field K]
[NumberField K]
{ι : Type u_2}
(s : Finset ι)
(α : ι → K)
:
NumberField.house (∑ i ∈ s, α i) ≤ ∑ i ∈ s, NumberField.house (α i)
theorem
NumberField.house_nonneg
{K : Type u_1}
[Field K]
[NumberField K]
(α : K)
:
0 ≤ NumberField.house α
theorem
NumberField.house_mul_le
{K : Type u_1}
[Field K]
[NumberField K]
(α β : K)
:
NumberField.house (α * β) ≤ NumberField.house α * NumberField.house β
@[simp]
theorem
NumberField.house_intCast
{K : Type u_1}
[Field K]
[NumberField K]
(x : ℤ)
:
NumberField.house ↑x = ↑|x|
theorem
NumberField.house.basis_repr_abs_le_const_mul_house
(K : Type u_1)
[Field K]
[NumberField K]
[DecidableEq (K →+* ℂ)]
(α : NumberField.RingOfIntegers K)
(i : K →+* ℂ)
:
Complex.abs ↑((((NumberField.integralBasis K).reindex (NumberField.equivReindex K).symm).repr ↑α) i) ≤ NumberField.house.c✝ K * NumberField.house ((algebraMap (NumberField.RingOfIntegers K) K) α)
theorem
NumberField.house.exists_ne_zero_int_vec_house_le
(K : Type u_1)
[Field K]
[NumberField K]
{α : Type u_2}
{β : Type u_3}
(a : Matrix α β (NumberField.RingOfIntegers K))
(ha : a ≠ 0)
{p q : ℕ}
(h0p : 0 < p)
(hpq : p < q)
[Fintype β]
(cardβ : Fintype.card β = q)
{A : ℝ}
(habs : ∀ (k : α) (l : β), NumberField.house ((algebraMap (NumberField.RingOfIntegers K) K) (a k l)) ≤ A)
[DecidableEq (K →+* ℂ)]
[Fintype α]
(cardα : Fintype.card α = p)
:
∃ (ξ : β → NumberField.RingOfIntegers K),
ξ ≠ 0 ∧ a.mulVec ξ = 0 ∧ ∀ (l : β),
NumberField.house ↑(ξ l) ≤ NumberField.house.c₁✝ K * (NumberField.house.c₁✝ K * ↑q * A) ^ (↑p / (↑q - ↑p))
There exists a "small" non-zero algebraic integral solution of an non-trivial underdetermined system of linear equations with algebraic integer coefficients.