Documentation

Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic

Canonical embedding of a number field #

The canonical embedding of a number field K of degree n is the ring homomorphism K →+* ℂ^n that sends x ∈ K to (φ_₁(x),...,φ_n(x)) where the φ_i's are the complex embeddings of K. Note that we do not choose an ordering of the embeddings, but instead map K into the type (K →+* ℂ) → ℂ of -vectors indexed by the complex embeddings.

Main definitions and results #

Tags #

number field, infinite places

The canonical embedding of a number field K of degree n into ℂ^n.

Equations
Instances For
    @[simp]
    theorem NumberField.canonicalEmbedding.apply_at {K : Type u_1} [Field K] (φ : K →+* ) (x : K) :

    The image of canonicalEmbedding lives in the -submodule of the x ∈ ((K →+* ℂ) → ℂ) such that conj x_φ = x_(conj φ) for all ∀ φ : K →+* ℂ.

    theorem NumberField.canonicalEmbedding.nnnorm_eq {K : Type u_1} [Field K] [NumberField K] (x : K) :
    (NumberField.canonicalEmbedding K) x‖₊ = Finset.univ.sup fun (φ : K →+* ) => φ x‖₊
    @[reducible, inline]

    The mixed space ℝ^r₁ × ℂ^r₂ with (r₁, r₂) the signature of K.

    Equations
    Instances For

      The mixed embedding of a number field K into the mixed space of K.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem NumberField.mixedEmbedding.mixedEmbedding_apply_ofIsComplex (K : Type u_1) [Field K] (x : K) (w : { w : NumberField.InfinitePlace K // w.IsComplex }) :
        ((NumberField.mixedEmbedding K) x).2 w = (↑w).embedding x
        instance NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume (K : Type u_1) [Field K] [NumberField K] :
        MeasureTheory.volume.IsAddHaarMeasure
        Equations
        • =
        Equations
        • =
        theorem NumberField.mixedEmbedding.volume_eq_zero {K : Type u_1} [Field K] [NumberField K] (w : { w : NumberField.InfinitePlace K // w.IsReal }) :
        MeasureTheory.volume {x : NumberField.mixedEmbedding.mixedSpace K | x.1 w = 0} = 0

        The set of points in the mixedSpace that are equal to 0 at a fixed (real) place has volume zero.

        The linear map that makes canonicalEmbedding and mixedEmbedding commute, see commMap_canonical_eq_mixed.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem NumberField.mixedEmbedding.commMap_apply_of_isReal (K : Type u_1) [Field K] (x : (K →+* )) {w : NumberField.InfinitePlace K} (hw : w.IsReal) :
          ((NumberField.mixedEmbedding.commMap K) x).1 w, hw = (x w.embedding).re
          theorem NumberField.mixedEmbedding.commMap_apply_of_isComplex (K : Type u_1) [Field K] (x : (K →+* )) {w : NumberField.InfinitePlace K} (hw : w.IsComplex) :
          ((NumberField.mixedEmbedding.commMap K) x).2 w, hw = x w.embedding

          This is a technical result to ensure that the image of the -basis of ℂ^n defined in canonicalEmbedding.latticeBasis is a -basis of the mixed space ℝ^r₁ × ℂ^r₂, see mixedEmbedding.latticeBasis.

          The norm at the infinite place w of an element of the mixed space. -

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem NumberField.mixedEmbedding.normAtPlace_real {K : Type u_1} [Field K] (w : NumberField.InfinitePlace K) (c : ) :
            (NumberField.mixedEmbedding.normAtPlace w) (fun (x : { w : NumberField.InfinitePlace K // w.IsReal }) => c, fun (x : { w : NumberField.InfinitePlace K // w.IsComplex }) => c) = |c|

            The norm of x is ∏ w, (normAtPlace x) ^ mult w. It is defined such that the norm of mixedEmbedding K a for a : K is equal to the absolute value of the norm of a over , see norm_eq_norm.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem NumberField.mixedEmbedding.norm_nonneg {K : Type u_1} [Field K] [NumberField K] (x : NumberField.mixedEmbedding.mixedSpace K) :
              0 NumberField.mixedEmbedding.norm x
              theorem NumberField.mixedEmbedding.norm_smul {K : Type u_1} [Field K] [NumberField K] (c : ) (x : NumberField.mixedEmbedding.mixedSpace K) :
              NumberField.mixedEmbedding.norm (c x) = |c| ^ Module.finrank K * NumberField.mixedEmbedding.norm x
              theorem NumberField.mixedEmbedding.norm_real {K : Type u_1} [Field K] [NumberField K] (c : ) :
              NumberField.mixedEmbedding.norm (fun (x : { w : NumberField.InfinitePlace K // w.IsReal }) => c, fun (x : { w : NumberField.InfinitePlace K // w.IsComplex }) => c) = |c| ^ Module.finrank K
              @[simp]
              theorem NumberField.mixedEmbedding.norm_eq_norm {K : Type u_1} [Field K] [NumberField K] (x : K) :
              NumberField.mixedEmbedding.norm ((NumberField.mixedEmbedding K) x) = |(Algebra.norm ) x|
              theorem NumberField.mixedEmbedding.norm_eq_zero_iff' {K : Type u_1} [Field K] [NumberField K] {x : NumberField.mixedEmbedding.mixedSpace K} (hx : x Set.range (NumberField.mixedEmbedding K)) :
              NumberField.mixedEmbedding.norm x = 0 x = 0
              @[reducible, inline]

              The type indexing the basis stdBasis.

              Equations
              Instances For

                The -basis of the mixed space of K formed by the vector equal to 1 at w and 0 elsewhere for IsReal w and by the couple of vectors equal to 1 (resp. I) at w and 0 elsewhere for IsComplex w.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem NumberField.mixedEmbedding.fundamentalDomain_stdBasis (K : Type u_1) [Field K] [NumberField K] :
                  ZSpan.fundamentalDomain (NumberField.mixedEmbedding.stdBasis K) = (Set.univ.pi fun (x : { w : NumberField.InfinitePlace K // w.IsReal }) => Set.Ico 0 1) ×ˢ Set.univ.pi fun (x : { w : NumberField.InfinitePlace K // w.IsComplex }) => Complex.measurableEquivPi ⁻¹' Set.univ.pi fun (x : Fin 2) => Set.Ico 0 1

                  The Equiv between index K and K →+* ℂ defined by sending a real infinite place w to the unique corresponding embedding w.embedding, and the pair ⟨w, 0⟩ (resp. ⟨w, 1⟩) for a complex infinite place w to w.embedding (resp. conjugate w.embedding).

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The matrix that gives the representation on stdBasis of the image by commMap of an element x of (K →+* ℂ) → ℂ fixed by the map x_φ ↦ conj x_(conjugate φ), see stdBasis_repr_eq_matrixToStdBasis_mul.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Let x : (K →+* ℂ) → ℂ such that x_φ = conj x_(conj φ) for all φ : K →+* ℂ, then the representation of commMap K x on stdBasis is given (up to reindexing) by the product of matrixToStdBasis by x.

                      @[reducible, inline]

                      The image of the ring of integers of K in the mixed space.

                      Equations
                      Instances For
                        @[reducible, inline]

                        The image of the fractional ideal I in the mixed space.

                        Equations
                        Instances For

                          The generalized index of the lattice generated by I in the lattice generated by 𝓞 K is equal to the norm of the ideal I. The result is stated in terms of base change determinant and is the translation of NumberField.det_basisOfFractionalIdeal_eq_absNorm in the mixed space. This is useful, in particular, to prove that the family obtained from the -basis of I is actually an -basis of the mixed space, see fractionalIdealLatticeBasis.

                          A -basis of the mixed space of K that is also a -basis of the image of the fractional ideal I.

                          Equations
                          Instances For

                            Let s be a set of real places, define the continuous linear equiv of the mixed space that swaps sign at places in s and leaves the rest unchanged.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              @[simp]
                              theorem NumberField.mixedEmbedding.negAt_apply_of_isReal_and_not_mem {K : Type u_1} [Field K] {s : Set { w : NumberField.InfinitePlace K // w.IsReal }} (x : NumberField.mixedEmbedding.mixedSpace K) {w : { w : NumberField.InfinitePlace K // w.IsReal }} (hw : ws) :
                              theorem NumberField.mixedEmbedding.volume_preserving_negAt {K : Type u_1} [Field K] {s : Set { w : NumberField.InfinitePlace K // w.IsReal }} [NumberField K] :
                              MeasureTheory.MeasurePreserving (⇑(NumberField.mixedEmbedding.negAt s)) MeasureTheory.volume MeasureTheory.volume

                              negAt preserves the volume .

                              @[simp]
                              theorem NumberField.mixedEmbedding.norm_negAt {K : Type u_1} [Field K] {s : Set { w : NumberField.InfinitePlace K // w.IsReal }} [NumberField K] (x : NumberField.mixedEmbedding.mixedSpace K) :
                              NumberField.mixedEmbedding.norm ((NumberField.mixedEmbedding.negAt s) x) = NumberField.mixedEmbedding.norm x

                              negAt preserves the norm.

                              For x : mixedSpace K, the set signSet x is the set of real places w s.t. x w ≤ 0.

                              Equations
                              Instances For

                                negAt s A is also equal to the preimage of A by negAt s. This fact is used to simplify some proofs.

                                @[reducible, inline]

                                The plusPart of a subset A of the mixedSpace is the set of points in A that are positive at all real places.

                                Equations
                                Instances For
                                  theorem NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem {K : Type u_1} [Field K] {s : Set { w : NumberField.InfinitePlace K // w.IsReal }} (A : Set (NumberField.mixedEmbedding.mixedSpace K)) {x : NumberField.mixedEmbedding.mixedSpace K} (hA : ∀ (x : NumberField.mixedEmbedding.mixedSpace K), x A (fun (w : { w : NumberField.InfinitePlace K // w.IsReal }) => |x.1 w|, x.2) A) (hx₁ : x A) (hx₂ : ∀ (w : { w : NumberField.InfinitePlace K // w.IsReal }), x.1 w 0) :
                                  x (NumberField.mixedEmbedding.negAt s) '' NumberField.mixedEmbedding.plusPart A (∀ ws, x.1 w < 0) ws, x.1 w > 0
                                  theorem NumberField.mixedEmbedding.iUnion_negAt_plusPart_union {K : Type u_1} [Field K] (A : Set (NumberField.mixedEmbedding.mixedSpace K)) (hA : ∀ (x : NumberField.mixedEmbedding.mixedSpace K), x A (fun (w : { w : NumberField.InfinitePlace K // w.IsReal }) => |x.1 w|, x.2) A) :

                                  Assume that A is symmetric at real places then, the union of the images of plusPart by negAt and of the set of elements of A that are zero at at least one real place is equal to A.

                                  The image of the plusPart of A by negAt have all the same volume as plusPart A.

                                  theorem NumberField.mixedEmbedding.volume_eq_two_pow_mul_volume_plusPart {K : Type u_1} [Field K] (A : Set (NumberField.mixedEmbedding.mixedSpace K)) (hA : ∀ (x : NumberField.mixedEmbedding.mixedSpace K), x A (fun (w : { w : NumberField.InfinitePlace K // w.IsReal }) => |x.1 w|, x.2) A) [NumberField K] (hm : MeasurableSet A) :
                                  MeasureTheory.volume A = 2 ^ NumberField.InfinitePlace.nrRealPlaces K * MeasureTheory.volume (NumberField.mixedEmbedding.plusPart A)

                                  If a subset A of the mixedSpace is symmetric at real places, then its volume is 2^ nrRealPlaces K times the volume of its plusPart.