Volume of balls #
Let E
be a finite dimensional normed ℝ
-vector space equipped with a Haar measure μ
. We
prove that
μ (Metric.ball 0 1) = (∫ (x : E), Real.exp (- ‖x‖ ^ p) ∂μ) / Real.Gamma (finrank ℝ E / p + 1)
for any real number p
with 0 < p
, see MeasureTheorymeasure_unitBall_eq_integral_div_gamma
. We
also prove the corresponding result to compute μ {x : E | g x < 1}
where g : E → ℝ
is a function
defining a norm on E
, see MeasureTheory.measure_lt_one_eq_integral_div_gamma
.
Using these formulas, we compute the volume of the unit balls in several cases.
MeasureTheory.volume_sum_rpow_lt
/MeasureTheory.volume_sum_rpow_le
: volume of the open and closed balls for the normLp
over a real finite dimensional vector space with1 ≤ p
. These are computed asvolume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) < r}
andvolume {x : ι → ℝ | (∑ i, |x i| ^ p) ^ (1 / p) ≤ r}
since the spacesPiLp
do not have aMeasureSpace
instance.Complex.volume_sum_rpow_lt_one
/Complex.volume_sum_rpow_lt
: same as above but for complex finite dimensional vector space.EuclideanSpace.volume_ball
/EuclideanSpace.volume_closedBall
: volume of open and closed balls in a finite dimensional Euclidean space.InnerProductSpace.volume_ball
/InnerProductSpace.volume_closedBall
: volume of open and closed balls in a finite dimensional real inner product space.Complex.volume_ball
/Complex.volume_closedBall
: volume of open and closed balls inℂ
.
Alias of EuclideanSpace.volume_ball
.
Alias of EuclideanSpace.volume_closedBall
.