Documentation

Mathlib.LinearAlgebra.TensorProduct.Subalgebra

Some results on tensor product of subalgebras #

Linear maps induced by multiplication for subalgebras #

Let R be a commutative ring, S be a commutative R-algebra. Let A and B be R-subalgebras in S (Subalgebra R S). We define some linear maps induced by the multiplication in S, which are mainly used in the definition of linearly disjointness.

def Subalgebra.lTensorBot {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
TensorProduct R A ≃ₐ[R] A

If A is a subalgebra of S/R, there is the natural R-algebra isomorphism between i(R) ⊗[R] A and A induced by multiplication in S, here i : R → S is the structure map. This generalizes Algebra.TensorProduct.lid as i(R) is not necessarily isomorphic to R.

This is the Subalgebra version of Submodule.lTensorOne

Equations
Instances For
    @[simp]
    theorem Subalgebra.lTensorBot_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (x : R) (a : A) :
    A.lTensorBot ((algebraMap R ) x ⊗ₜ[R] a) = x a
    @[simp]
    theorem Subalgebra.lTensorBot_one_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
    A.lTensorBot (1 ⊗ₜ[R] a) = a
    @[simp]
    theorem Subalgebra.lTensorBot_symm_apply {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
    A.lTensorBot.symm a = 1 ⊗ₜ[R] a
    def Subalgebra.rTensorBot {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
    TensorProduct R A ≃ₐ[R] A

    If A is a subalgebra of S/R, there is the natural R-algebra isomorphism between A ⊗[R] i(R) and A induced by multiplication in S, here i : R → S is the structure map. This generalizes Algebra.TensorProduct.rid as i(R) is not necessarily isomorphic to R.

    This is the Subalgebra version of Submodule.rTensorOne

    Equations
    Instances For
      @[simp]
      theorem Subalgebra.rTensorBot_tmul {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (x : R) (a : A) :
      A.rTensorBot (a ⊗ₜ[R] (algebraMap R ) x) = x a
      @[simp]
      theorem Subalgebra.rTensorBot_tmul_one {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
      A.rTensorBot (a ⊗ₜ[R] 1) = a
      @[simp]
      theorem Subalgebra.rTensorBot_symm_apply {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] {A : Subalgebra R S} (a : A) :
      A.rTensorBot.symm a = a ⊗ₜ[R] 1
      @[simp]
      theorem Subalgebra.comm_trans_lTensorBot {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
      (Algebra.TensorProduct.comm R A ).trans A.lTensorBot = A.rTensorBot
      @[simp]
      theorem Subalgebra.comm_trans_rTensorBot {R : Type u} {S : Type v} [CommSemiring R] [Semiring S] [Algebra R S] (A : Subalgebra R S) :
      (Algebra.TensorProduct.comm R A).trans A.rTensorBot = A.lTensorBot
      def Subalgebra.mulMap {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
      TensorProduct R A B →ₐ[R] S

      If A and B are subalgebras in a commutative algebra S over R, there is the natural R-algebra homomorphism A ⊗[R] B →ₐ[R] S induced by multiplication in S.

      Equations
      Instances For
        @[simp]
        theorem Subalgebra.mulMap_tmul {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) (a : A) (b : B) :
        (A.mulMap B) (a ⊗ₜ[R] b) = a * b
        theorem Subalgebra.mulMap_toLinearMap {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
        (A.mulMap B).toLinearMap = (Subalgebra.toSubmodule A).mulMap (Subalgebra.toSubmodule B)
        theorem Subalgebra.mulMap_comm {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
        B.mulMap A = (A.mulMap B).comp (Algebra.TensorProduct.comm R B A)
        theorem Subalgebra.mulMap_range {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
        (A.mulMap B).range = A B
        theorem Subalgebra.mulMap_bot_left_eq {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) :
        .mulMap A = A.val.comp A.lTensorBot
        theorem Subalgebra.mulMap_bot_right_eq {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) :
        A.mulMap = A.val.comp A.rTensorBot
        def Subalgebra.mulMap' {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
        TensorProduct R A B →ₐ[R] (A B)

        If A and B are subalgebras in a commutative algebra S over R, there is the natural R-algebra homomorphism A ⊗[R] B →ₐ[R] A ⊔ B induced by multiplication in S, which is surjective (Subalgebra.mulMap'_surjective).

        Equations
        • A.mulMap' B = (↑((A.mulMap B).range.equivOfEq (A B) )).comp (A.mulMap B).rangeRestrict
        Instances For
          @[simp]
          theorem Subalgebra.val_mulMap'_tmul {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] {A : Subalgebra R S} {B : Subalgebra R S} (a : A) (b : B) :
          ((A.mulMap' B) (a ⊗ₜ[R] b)) = a * b
          theorem Subalgebra.mulMap'_surjective {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) :
          Function.Surjective (A.mulMap' B)
          theorem Subalgebra.rank_sup_le_of_free {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R A] [Module.Free R B] :
          Module.rank R (A B) Module.rank R A * Module.rank R B

          If A and B are subalgebras of a commutative R-algebra S, both of them are free R-algebras, then the rank of A ⊔ B is less than or equal to the product of that of A and B.

          theorem Subalgebra.finrank_sup_le_of_free {R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (A : Subalgebra R S) (B : Subalgebra R S) [Module.Free R A] [Module.Free R B] :

          If A and B are subalgebras of a commutative R-algebra S, both of them are free R-algebras, then the Module.finrank of A ⊔ B is less than or equal to the product of that of A and B.