The monoidal structure on QuadraticModuleCat
is symmetric. #
In this file we show:
QuadraticModuleCat.instSymmetricCategory : SymmetricCategory (QuadraticModuleCat.{u} R)
Implementation notes #
This file essentially mirrors Mathlib/Algebra/Category/AlgebraCat/Symmetric.lean
.
noncomputable instance
QuadraticModuleCat.instBraidedCategory
{R : Type u}
[CommRing R]
[Invertible 2]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
QuadraticModuleCat.toModuleCatBraidedFunctor
(R : Type u)
[CommRing R]
[Invertible 2]
:
forget₂ (QuadraticModuleCat R) (ModuleCat R)
as a braided functor.
Equations
- QuadraticModuleCat.toModuleCatBraidedFunctor R = { toMonoidalFunctor := QuadraticModuleCat.toModuleCatMonoidalFunctor R, braided := ⋯ }
Instances For
@[simp]
theorem
QuadraticModuleCat.toModuleCatBraidedFunctor_toMonoidalFunctor
(R : Type u)
[CommRing R]
[Invertible 2]
:
(QuadraticModuleCat.toModuleCatBraidedFunctor R).toMonoidalFunctor = QuadraticModuleCat.toModuleCatMonoidalFunctor R
noncomputable instance
QuadraticModuleCat.instFaithfulModuleCatToModuleCatBraidedFunctor
{R : Type u}
[CommRing R]
[Invertible 2]
:
(QuadraticModuleCat.toModuleCatBraidedFunctor R).Faithful
Equations
- ⋯ = ⋯
noncomputable instance
QuadraticModuleCat.instSymmetricCategory
{R : Type u}
[CommRing R]
[Invertible 2]
:
Equations
- QuadraticModuleCat.instSymmetricCategory = CategoryTheory.symmetricCategoryOfFaithful (QuadraticModuleCat.toModuleCatBraidedFunctor R)