noncomputable def
ModuleCat.braiding
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(N : ModuleCat R)
:
(implementation) the braiding for R-modules
Equations
- M.braiding N = (TensorProduct.comm R ↑M ↑N).toModuleIso
Instances For
@[simp]
theorem
ModuleCat.MonoidalCategory.braiding_naturality
{R : Type u}
[CommRing R]
{X₁ : ModuleCat R}
{X₂ : ModuleCat R}
{Y₁ : ModuleCat R}
{Y₂ : ModuleCat R}
(f : X₁ ⟶ Y₁)
(g : X₂ ⟶ Y₂)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom f g) (Y₁.braiding Y₂).hom = CategoryTheory.CategoryStruct.comp (X₁.braiding X₂).hom (CategoryTheory.MonoidalCategory.tensorHom g f)
@[simp]
theorem
ModuleCat.MonoidalCategory.braiding_naturality_left
{R : Type u}
[CommRing R]
{X : ModuleCat R}
{Y : ModuleCat R}
(f : X ⟶ Y)
(Z : ModuleCat R)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight f Z) (Y.braiding Z).hom = CategoryTheory.CategoryStruct.comp (X.braiding Z).hom (CategoryTheory.MonoidalCategory.whiskerLeft Z f)
@[simp]
theorem
ModuleCat.MonoidalCategory.braiding_naturality_right
{R : Type u}
[CommRing R]
(X : ModuleCat R)
{Y : ModuleCat R}
{Z : ModuleCat R}
(f : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft X f) (X.braiding Z).hom = CategoryTheory.CategoryStruct.comp (X.braiding Y).hom (CategoryTheory.MonoidalCategory.whiskerRight f X)
@[simp]
theorem
ModuleCat.MonoidalCategory.hexagon_forward
{R : Type u}
[CommRing R]
(X : ModuleCat R)
(Y : ModuleCat R)
(Z : ModuleCat R)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Y Z).hom
(CategoryTheory.CategoryStruct.comp (X.braiding (CategoryTheory.MonoidalCategory.tensorObj Y Z)).hom
(CategoryTheory.MonoidalCategory.associator Y Z X).hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerRight (X.braiding Y).hom Z)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator Y X Z).hom
(CategoryTheory.MonoidalCategory.whiskerLeft Y (X.braiding Z).hom))
@[simp]
theorem
ModuleCat.MonoidalCategory.hexagon_reverse
{R : Type u}
[CommRing R]
(X : ModuleCat R)
(Y : ModuleCat R)
(Z : ModuleCat R)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Y Z).inv
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.tensorObj X Y).braiding Z).hom
(CategoryTheory.MonoidalCategory.associator Z X Y).inv) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.whiskerLeft X (Y.braiding Z).hom)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Z Y).inv
(CategoryTheory.MonoidalCategory.whiskerRight (X.braiding Z).hom Y))
The symmetric monoidal structure on Module R
.
Equations
- ModuleCat.MonoidalCategory.symmetricCategory = CategoryTheory.SymmetricCategory.mk ⋯
theorem
ModuleCat.MonoidalCategory.tensor_μ_eq_tensorTensorTensorComm
{R : Type u}
[CommRing R]
{A : ModuleCat R}
{B : ModuleCat R}
{C : ModuleCat R}
{D : ModuleCat R}
:
CategoryTheory.tensor_μ A B C D = ↑(TensorProduct.tensorTensorTensorComm R ↑A ↑B ↑C ↑D)