Rank of localization #
Main statements #
IsLocalizedModule.lift_rank_eq
:rank_Rₚ Mₚ = rank R M
.rank_quotient_add_rank_of_isDomain
: The rank-nullity theorem for commutative domains.
theorem
IsLocalizedModule.linearIndependent_lift
{R : Type u}
{S : Type u'}
{M : Type v}
{N : Type v'}
[CommRing R]
[CommRing S]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
[Algebra R S]
[Module S N]
[IsScalarTower R S N]
(p : Submonoid R)
[IsLocalization p S]
(f : M →ₗ[R] N)
[IsLocalizedModule p f]
(hp : p ≤ nonZeroDivisors R)
{ι : Type u_1}
{v : ι → N}
(hf : LinearIndependent S v)
:
∃ (w : ι → M), LinearIndependent R w
theorem
IsLocalizedModule.lift_rank_eq
{R : Type u}
(S : Type u')
{M : Type v}
{N : Type v'}
[CommRing R]
[CommRing S]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
[Algebra R S]
[Module S N]
[IsScalarTower R S N]
(p : Submonoid R)
[IsLocalization p S]
(f : M →ₗ[R] N)
[IsLocalizedModule p f]
(hp : p ≤ nonZeroDivisors R)
:
theorem
IsLocalizedModule.rank_eq
{R : Type u}
(S : Type u')
{M : Type v}
[CommRing R]
[CommRing S]
[AddCommGroup M]
[Module R M]
[Algebra R S]
(p : Submonoid R)
[IsLocalization p S]
(hp : p ≤ nonZeroDivisors R)
{N : Type v}
[AddCommGroup N]
[Module R N]
[Module S N]
[IsScalarTower R S N]
(f : M →ₗ[R] N)
[IsLocalizedModule p f]
:
Module.rank S N = Module.rank R M
theorem
exists_set_linearIndependent_of_isDomain
(R : Type u)
(M : Type v)
[CommRing R]
[AddCommGroup M]
[Module R M]
[IsDomain R]
:
∃ (s : Set M), Cardinal.mk ↑s = Module.rank R M ∧ LinearIndependent (ι := ↑s) R Subtype.val
theorem
rank_quotient_add_rank_of_isDomain
{R : Type u}
{M : Type v}
[CommRing R]
[AddCommGroup M]
[Module R M]
[IsDomain R]
(M' : Submodule R M)
:
Module.rank R (M ⧸ M') + Module.rank R ↥M' = Module.rank R M
The rank-nullity theorem for commutative domains. Also see rank_quotient_add_rank
.
Equations
- ⋯ = ⋯
theorem
aleph0_le_rank_of_isEmpty_oreSet
{R : Type u_1}
[Ring R]
[IsDomain R]
(hS : IsEmpty (OreLocalization.OreSet (nonZeroDivisors R)))
:
A domain that is not (left) Ore is of infinite rank. See [cohn_1995] Proposition 1.3.6
theorem
nonempty_oreSet_of_strongRankCondition
{R : Type u_1}
[Ring R]
[IsDomain R]
[StrongRankCondition R]
: