Documentation

Mathlib.RingTheory.OreLocalization.OreSet

(Left) Ore sets and rings #

This file contains results on left Ore sets for rings and monoids with zero.

References #

def OreLocalization.oreSetOfCancelMonoidWithZero {R : Type u_1} [CancelMonoidWithZero R] {S : Submonoid R} (oreNum : RSR) (oreDenom : RSS) (ore_eq : ∀ (r : R) (s : S), (oreDenom r s) * r = oreNum r s * s) :

Cancellability in monoids with zeros can act as a replacement for the ore_right_cancel condition of an ore set.

Equations
Instances For
    def OreLocalization.oreSetOfNoZeroDivisors {R : Type u_1} [Ring R] [NoZeroDivisors R] {S : Submonoid R} (oreNum : RSR) (oreDenom : RSS) (ore_eq : ∀ (r : R) (s : S), (oreDenom r s) * r = oreNum r s * s) :

    In rings without zero divisors, the first (cancellability) condition is always fulfilled, it suffices to give a proof for the Ore condition itself.

    Equations
    Instances For
      theorem OreLocalization.nonempty_oreSet_iff {R : Type u_1} [Ring R] {S : Submonoid R} :
      Nonempty (OreLocalization.OreSet S) (∀ (r₁ r₂ : R) (s : S), r₁ * s = r₂ * s∃ (s' : S), s' * r₁ = s' * r₂) ∀ (r : R) (s : S), ∃ (r' : R) (s' : S), s' * r = r' * s
      theorem OreLocalization.nonempty_oreSet_iff_of_noZeroDivisors {R : Type u_1} [Ring R] [NoZeroDivisors R] {S : Submonoid R} :
      Nonempty (OreLocalization.OreSet S) ∀ (r : R) (s : S), ∃ (r' : R) (s' : S), s' * r = r' * s