Documentation

Mathlib.GroupTheory.Subgroup.Saturated

Saturated subgroups #

Tags #

subgroup, subgroups

def Subgroup.Saturated {G : Type u_1} [Group G] (H : Subgroup G) :

A subgroup H of G is saturated if for all n : ℕ and g : G with g^n ∈ H we have n = 0 or g ∈ H.

Equations
  • H.Saturated = ∀ ⦃n : ⦄ ⦃g : G⦄, g ^ n Hn = 0 g H
Instances For

    An additive subgroup H of G is saturated if for all n : ℕ and g : G with n•g ∈ H we have n = 0 or g ∈ H.

    Equations
    Instances For
      theorem Subgroup.saturated_iff_npow {G : Type u_1} [Group G] {H : Subgroup G} :
      H.Saturated ∀ (n : ) (g : G), g ^ n Hn = 0 g H
      theorem AddSubgroup.saturated_iff_nsmul {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
      H.Saturated ∀ (n : ) (g : G), n g Hn = 0 g H
      theorem Subgroup.saturated_iff_zpow {G : Type u_1} [Group G] {H : Subgroup G} :
      H.Saturated ∀ (n : ) (g : G), g ^ n Hn = 0 g H
      theorem AddSubgroup.saturated_iff_zsmul {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
      H.Saturated ∀ (n : ) (g : G), n g Hn = 0 g H
      theorem AddSubgroup.ker_saturated {A₁ : Type u_1} {A₂ : Type u_2} [AddCommGroup A₁] [AddCommGroup A₂] [NoZeroSMulDivisors A₂] (f : A₁ →+ A₂) :
      f.ker.Saturated