Documentation

Mathlib.GroupTheory.SpecificGroups.ZGroup

Z-Groups #

A Z-group is a group whose Sylow subgroups are all cyclic.

Main definitions #

Main results #

TODO: Show that if G is a Z-group with commutator subgroup G', then G = G' ⋊ G/G' where G' and G/G' are cyclic of coprime orders.

class IsZGroup (G : Type u_1) [Group G] :

A Z-group is a group whose Sylow subgroups are all cyclic.

Instances
    theorem isZGroup_iff (G : Type u_1) [Group G] :
    IsZGroup G ∀ (p : ), Nat.Prime p∀ (P : Sylow p G), IsCyclic P
    theorem IsPGroup.isCyclic_of_isZGroup {G : Type u_1} [Group G] [IsZGroup G] {p : } [Fact (Nat.Prime p)] {P : Subgroup G} (hP : IsPGroup p P) :
    theorem IsZGroup.of_injective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [hG' : IsZGroup G'] (hf : Function.Injective f) :
    theorem IsZGroup.of_surjective {G : Type u_1} {G' : Type u_2} [Group G] [Group G'] {f : G →* G'} [Finite G] [hG : IsZGroup G] (hf : Function.Surjective f) :
    instance IsZGroup.instQuotientSubgroupOfFinite {G : Type u_1} [Group G] [Finite G] [IsZGroup G] (H : Subgroup G) [H.Normal] :

    A finite Z-group has cyclic abelianization.

    A finite Z-group has cyclic commutator subgroup.

    theorem IsPGroup.smul_mul_inv_trivial_or_surjective {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] [IsCyclic G] (hG : IsPGroup p G) {K : Type u_4} [Group K] [MulDistribMulAction K G] (hGK : (Nat.card G).Coprime (Nat.card K)) :
    (∀ (g : G) (k : K), k g * g⁻¹ = 1) ∀ (g : G), ∃ (k : K) (q : G), k q * q⁻¹ = g

    If a cyclic p-group G acts on a group K of coprime order, then the map K × G → G defined by (k, g) ↦ k • g * g⁻¹ is either trivial or surjective.

    theorem IsPGroup.commutator_eq_bot_or_commutator_eq_self {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] {P K : Subgroup G} [IsCyclic P] (hP : IsPGroup p P) (hKP : K P.normalizer) (hPK : (Nat.card P).Coprime (Nat.card K)) :

    If a cyclic p-subgroup P acts by conjugation on a subgroup K of coprime order, then either ⁅K, P⁆ = ⊥ or ⁅K, P⁆ = P.

    theorem Sylow.commutator_eq_bot_or_commutator_eq_self {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic P] [(↑P).Normal] {K : Subgroup G} (h : K.IsComplement' P) :
    K, P = K, P = P

    If a normal cyclic Sylow p-subgroup P has a complement K, then either ⁅K, P⁆ = ⊥ or ⁅K, P⁆ = P.

    theorem Sylow.le_center_or_le_commutator {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic P] [(↑P).Normal] :

    A normal cyclic Sylow subgroup is either central or contained in the commutator subgroup.

    theorem Sylow.normalizer_le_centralizer_or_le_commutator {G : Type u_1} [Group G] {p : } [Fact (Nat.Prime p)] [Finite G] (P : Sylow p G) [IsCyclic P] :
    (↑P).normalizer Subgroup.centralizer P P commutator G

    A cyclic Sylow subgroup is either central in its normalizer or contained in the commutator subgroup.

    If G has a cyclic Sylow p-subgroup, then the cardinality and index of the commutator subgroup of G cannot both be divisible by p.

    theorem IsZGroup.coprime_commutator_index (G : Type u_1) [Group G] [Finite G] [IsZGroup G] :
    (Nat.card (commutator G)).Coprime (commutator G).index

    If G is a finite Z-group, then commutator G is a Hall subgroup of G.

    theorem isZGroup_of_coprime {G : Type u_1} {G' : Type u_2} {G'' : Type u_3} [Group G] [Group G'] [Group G''] {f : G →* G'} {f' : G' →* G''} [Finite G] [IsZGroup G] [IsZGroup G''] (h_le : f'.ker f.range) (h_cop : (Nat.card G).Coprime (Nat.card G'')) :

    An extension of coprime Z-groups is a Z-group.