Documentation

Mathlib.GroupTheory.Coset.Defs

Cosets #

This file develops the basic theory of left and right cosets.

When G is a group and a : G, s : Set G, with open scoped Pointwise we can write:

If instead G is an additive group, we can write (with open scoped Pointwise still)

Main definitions #

Notation #

TODO #

Properly merge with pointwise actions on sets, by renaming and deduplicating lemmas as appropriate.

def QuotientGroup.leftRel {α : Type u_1} [Group α] (s : Subgroup α) :

The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.

Equations
Instances For
    def QuotientAddGroup.leftRel {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :

    The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.

    Equations
    Instances For
      theorem QuotientGroup.leftRel_apply {α : Type u_1} [Group α] {s : Subgroup α} {x : α} {y : α} :
      theorem QuotientAddGroup.leftRel_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {x : α} {y : α} :
      theorem QuotientGroup.leftRel_eq {α : Type u_1} [Group α] (s : Subgroup α) :
      (QuotientGroup.leftRel s) = fun (x y : α) => x⁻¹ * y s
      theorem QuotientAddGroup.leftRel_eq {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
      (QuotientAddGroup.leftRel s) = fun (x y : α) => -x + y s
      instance QuotientGroup.leftRelDecidable {α : Type u_1} [Group α] (s : Subgroup α) [DecidablePred fun (x : α) => x s] :
      Equations
      Equations

      α ⧸ s is the quotient type representing the left cosets of s. If s is a normal subgroup, α ⧸ s is a group

      Equations

      α ⧸ s is the quotient type representing the left cosets of s. If s is a normal subgroup, α ⧸ s is a group

      Equations
      def QuotientGroup.rightRel {α : Type u_1} [Group α] (s : Subgroup α) :

      The equivalence relation corresponding to the partition of a group by right cosets of a subgroup.

      Equations
      Instances For
        def QuotientAddGroup.rightRel {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :

        The equivalence relation corresponding to the partition of a group by right cosets of a subgroup.

        Equations
        Instances For
          theorem QuotientGroup.rightRel_apply {α : Type u_1} [Group α] {s : Subgroup α} {x : α} {y : α} :
          theorem QuotientAddGroup.rightRel_apply {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {x : α} {y : α} :
          theorem QuotientGroup.rightRel_eq {α : Type u_1} [Group α] (s : Subgroup α) :
          (QuotientGroup.rightRel s) = fun (x y : α) => y * x⁻¹ s
          theorem QuotientAddGroup.rightRel_eq {α : Type u_1} [AddGroup α] (s : AddSubgroup α) :
          (QuotientAddGroup.rightRel s) = fun (x y : α) => y + -x s
          instance QuotientGroup.rightRelDecidable {α : Type u_1} [Group α] (s : Subgroup α) [DecidablePred fun (x : α) => x s] :
          Equations
          Equations

          Right cosets are in bijection with left cosets.

          Equations
          Instances For

            Right cosets are in bijection with left cosets.

            Equations
            Instances For
              @[reducible, inline]
              abbrev QuotientGroup.mk {α : Type u_1} [Group α] {s : Subgroup α} (a : α) :
              α s

              The canonical map from a group α to the quotient α ⧸ s.

              Equations
              Instances For
                @[reducible, inline]
                abbrev QuotientAddGroup.mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (a : α) :
                α s

                The canonical map from an AddGroup α to the quotient α ⧸ s.

                Equations
                Instances For
                  theorem QuotientGroup.mk_surjective {α : Type u_1} [Group α] {s : Subgroup α} :
                  Function.Surjective QuotientGroup.mk
                  theorem QuotientAddGroup.mk_surjective {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                  Function.Surjective QuotientAddGroup.mk
                  @[simp]
                  theorem QuotientGroup.range_mk {α : Type u_1} [Group α] {s : Subgroup α} :
                  Set.range QuotientGroup.mk = Set.univ
                  @[simp]
                  theorem QuotientAddGroup.range_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                  Set.range QuotientAddGroup.mk = Set.univ
                  theorem QuotientGroup.induction_on {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} (x : α s) (H : ∀ (z : α), C z) :
                  C x
                  theorem QuotientAddGroup.induction_on {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} (x : α s) (H : ∀ (z : α), C z) :
                  C x
                  instance QuotientGroup.instCoeQuotientSubgroup {α : Type u_1} [Group α] {s : Subgroup α} :
                  Coe α (α s)
                  Equations
                  • QuotientGroup.instCoeQuotientSubgroup = { coe := QuotientGroup.mk }
                  instance QuotientAddGroup.instCoeQuotientAddSubgroup {α : Type u_1} [AddGroup α] {s : AddSubgroup α} :
                  Coe α (α s)
                  Equations
                  • QuotientAddGroup.instCoeQuotientAddSubgroup = { coe := QuotientAddGroup.mk }
                  @[deprecated]
                  theorem QuotientGroup.induction_on' {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} (x : α s) (H : ∀ (z : α), C z) :
                  C x

                  Alias of QuotientGroup.induction_on.

                  @[deprecated]
                  theorem QuotientAddGroup.induction_on' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} (x : α s) (H : ∀ (z : α), C z) :
                  C x
                  @[simp]
                  theorem QuotientGroup.quotient_liftOn_mk {α : Type u_1} [Group α] {s : Subgroup α} {β : Sort u_2} (f : αβ) (h : ∀ (a b : α), (QuotientGroup.leftRel s) a bf a = f b) (x : α) :
                  Quotient.liftOn' (↑x) f h = f x
                  @[simp]
                  theorem QuotientAddGroup.quotient_liftOn_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {β : Sort u_2} (f : αβ) (h : ∀ (a b : α), (QuotientAddGroup.leftRel s) a bf a = f b) (x : α) :
                  Quotient.liftOn' (↑x) f h = f x
                  theorem QuotientGroup.forall_mk {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} :
                  (∀ (x : α s), C x) ∀ (x : α), C x
                  theorem QuotientAddGroup.forall_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} :
                  (∀ (x : α s), C x) ∀ (x : α), C x
                  theorem QuotientGroup.exists_mk {α : Type u_1} [Group α] {s : Subgroup α} {C : α sProp} :
                  (∃ (x : α s), C x) ∃ (x : α), C x
                  theorem QuotientAddGroup.exists_mk {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {C : α sProp} :
                  (∃ (x : α s), C x) ∃ (x : α), C x
                  theorem QuotientGroup.eq {α : Type u_1} [Group α] {s : Subgroup α} {a : α} {b : α} :
                  a = b a⁻¹ * b s
                  theorem QuotientAddGroup.eq {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {a : α} {b : α} :
                  a = b -a + b s
                  @[deprecated]
                  theorem QuotientGroup.eq' {α : Type u_1} [Group α] {s : Subgroup α} {a : α} {b : α} :
                  a = b a⁻¹ * b s

                  Alias of QuotientGroup.eq.

                  @[deprecated]
                  theorem QuotientAddGroup.eq' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {a : α} {b : α} :
                  a = b -a + b s
                  theorem QuotientGroup.out_eq' {α : Type u_1} [Group α] {s : Subgroup α} (a : α s) :
                  (Quotient.out' a) = a
                  theorem QuotientAddGroup.out_eq' {α : Type u_1} [AddGroup α] {s : AddSubgroup α} (a : α s) :
                  (Quotient.out' a) = a
                  theorem QuotientGroup.mk_out'_eq_mul {α : Type u_1} [Group α] (s : Subgroup α) (g : α) :
                  ∃ (h : s), Quotient.out' g = g * h
                  theorem QuotientAddGroup.mk_out'_eq_mul {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (g : α) :
                  ∃ (h : s), Quotient.out' g = g + h
                  @[simp]
                  theorem QuotientGroup.mk_mul_of_mem {α : Type u_1} [Group α] {s : Subgroup α} {b : α} (a : α) (hb : b s) :
                  (a * b) = a
                  @[simp]
                  theorem QuotientAddGroup.mk_add_of_mem {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {b : α} (a : α) (hb : b s) :
                  (a + b) = a
                  theorem QuotientGroup.preimage_image_mk {α : Type u_1} [Group α] (N : Subgroup α) (s : Set α) :
                  QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' s) = ⋃ (x : N), (fun (x_1 : α) => x_1 * x) ⁻¹' s
                  theorem QuotientAddGroup.preimage_image_mk {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) :
                  QuotientAddGroup.mk ⁻¹' (QuotientAddGroup.mk '' s) = ⋃ (x : N), (fun (x_1 : α) => x_1 + x) ⁻¹' s
                  theorem QuotientGroup.preimage_image_mk_eq_iUnion_image {α : Type u_1} [Group α] (N : Subgroup α) (s : Set α) :
                  QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' s) = ⋃ (x : N), (fun (x_1 : α) => x_1 * x) '' s
                  theorem QuotientAddGroup.preimage_image_mk_eq_iUnion_image {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) :
                  QuotientAddGroup.mk ⁻¹' (QuotientAddGroup.mk '' s) = ⋃ (x : N), (fun (x_1 : α) => x_1 + x) '' s
                  theorem QuotientGroup.preimage_image_mk_eq_mul {α : Type u_1} [Group α] (N : Subgroup α) (s : Set α) :
                  QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' s) = s * N
                  theorem QuotientAddGroup.preimage_image_mk_eq_add {α : Type u_1} [AddGroup α] (N : AddSubgroup α) (s : Set α) :
                  QuotientAddGroup.mk ⁻¹' (QuotientAddGroup.mk '' s) = s + N
                  def Subgroup.quotientEquivOfEq {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s = t) :
                  α s α t

                  If two subgroups M and N of G are equal, their quotients are in bijection.

                  Equations
                  Instances For
                    def AddSubgroup.quotientEquivOfEq {α : Type u_1} [AddGroup α] {s : AddSubgroup α} {t : AddSubgroup α} (h : s = t) :
                    α s α t

                    If two subgroups M and N of G are equal, their quotients are in bijection.

                    Equations
                    Instances For
                      theorem Subgroup.quotientEquivOfEq_mk {α : Type u_1} [Group α] {s : Subgroup α} {t : Subgroup α} (h : s = t) (a : α) :