Documentation

Mathlib.Geometry.RingedSpace.LocallyRingedSpace.ResidueField

Residue fields of points #

Any point x of a locally ringed space X comes with a natural residue field, namely the residue field of the stalk at x. Moreover, for every open subset of X containing x, we have a canonical evaluation map from Γ(X, U) to the residue field of X at x.

Main definitions #

The following are in the AlgebraicGeometry.LocallyRingedSpace namespace:

The residue field of X at a point x is the residue field of the stalk of X at x.

Equations
Instances For
    Equations
    def AlgebraicGeometry.LocallyRingedSpace.evaluation (X : AlgebraicGeometry.LocallyRingedSpace) {U : TopologicalSpace.Opens X.toTopCat} (x : U) :
    X.presheaf.obj (Opposite.op U) X.residueField x

    If U is an open of X containing x, we have a canonical ring map from the sections over U to the residue field of x.

    If we interpret sections over U as functions of X defined on U, then this ring map corresponds to evaluation at x.

    Equations
    Instances For
      def AlgebraicGeometry.LocallyRingedSpace.Γevaluation (X : AlgebraicGeometry.LocallyRingedSpace) (x : X.toTopCat) :
      X.presheaf.obj (Opposite.op ) X.residueField x

      The global evaluation map from Γ(X, ⊤) to the residue field at x.

      Equations
      • X.Γevaluation x = X.evaluation x,
      Instances For
        @[simp]
        theorem AlgebraicGeometry.LocallyRingedSpace.evaluation_eq_zero_iff_not_mem_basicOpen (X : AlgebraicGeometry.LocallyRingedSpace) {U : TopologicalSpace.Opens X.toTopCat} (x : U) (f : (X.presheaf.obj (Opposite.op U))) :
        (X.evaluation x) f = 0 xX.toRingedSpace.basicOpen f
        theorem AlgebraicGeometry.LocallyRingedSpace.evaluation_ne_zero_iff_mem_basicOpen (X : AlgebraicGeometry.LocallyRingedSpace) {U : TopologicalSpace.Opens X.toTopCat} (x : U) (f : (X.presheaf.obj (Opposite.op U))) :
        (X.evaluation x) f 0 x X.toRingedSpace.basicOpen f
        theorem AlgebraicGeometry.LocallyRingedSpace.basicOpen_eq_bot_iff_forall_evaluation_eq_zero (X : AlgebraicGeometry.LocallyRingedSpace) {U : TopologicalSpace.Opens X.toTopCat} (f : (X.presheaf.obj (Opposite.op U))) :
        X.toRingedSpace.basicOpen f = ∀ (x : U), (X.evaluation x) f = 0
        @[simp]
        theorem AlgebraicGeometry.LocallyRingedSpace.Γevaluation_eq_zero_iff_not_mem_basicOpen (X : AlgebraicGeometry.LocallyRingedSpace) (x : X.toTopCat) (f : (X.presheaf.obj (Opposite.op ))) :
        (X.Γevaluation x) f = 0 xX.toRingedSpace.basicOpen f
        theorem AlgebraicGeometry.LocallyRingedSpace.Γevaluation_ne_zero_iff_mem_basicOpen (X : AlgebraicGeometry.LocallyRingedSpace) (x : X.toTopCat) (f : (X.presheaf.obj (Opposite.op ))) :
        (X.Γevaluation x) f 0 x X.toRingedSpace.basicOpen f
        def AlgebraicGeometry.LocallyRingedSpace.residueFieldMap {X : AlgebraicGeometry.LocallyRingedSpace} {Y : AlgebraicGeometry.LocallyRingedSpace} (f : X Y) (x : X.toTopCat) :
        Y.residueField (f.base x) X.residueField x

        If X ⟶ Y is a morphism of locally ringed spaces and x a point of X, we obtain a morphism of residue fields in the other direction.

        Equations
        Instances For
          theorem AlgebraicGeometry.LocallyRingedSpace.evaluation_naturality_apply {X : AlgebraicGeometry.LocallyRingedSpace} {Y : AlgebraicGeometry.LocallyRingedSpace} (f : X Y) {V : TopologicalSpace.Opens Y.toTopCat} (x : ((TopologicalSpace.Opens.map f.base).obj V)) (a : (Y.presheaf.obj (Opposite.op V))) :
          (AlgebraicGeometry.LocallyRingedSpace.residueFieldMap f x) ((Y.evaluation f.base x, ) a) = (X.evaluation x) ((f.c.app (Opposite.op V)) a)
          theorem AlgebraicGeometry.LocallyRingedSpace.Γevaluation_naturality_apply {X : AlgebraicGeometry.LocallyRingedSpace} {Y : AlgebraicGeometry.LocallyRingedSpace} (f : X Y) (x : X.toTopCat) (a : (Y.presheaf.obj (Opposite.op ))) :
          (AlgebraicGeometry.LocallyRingedSpace.residueFieldMap f x) ((Y.Γevaluation (f.base x)) a) = (X.Γevaluation x) ((f.c.app (Opposite.op )) a)