Documentation

Mathlib.Geometry.RingedSpace.Basic

Ringed spaces #

We introduce the category of ringed spaces, as an alias for SheafedSpace CommRingCat.

The facts collected in this file are typically stated for locally ringed spaces, but never actually make use of the locality of stalks. See for instance https://stacks.math.columbia.edu/tag/01HZ.

@[reducible, inline]

The type of Ringed spaces, as an abbreviation for SheafedSpace CommRingCat.

Equations
Instances For
    theorem AlgebraicGeometry.RingedSpace.exists_res_eq_zero_of_germ_eq_zero (X : AlgebraicGeometry.RingedSpace) (U : TopologicalSpace.Opens X.toPresheafedSpace) (f : (X.presheaf.obj (Opposite.op U))) (x : U) (h : (X.presheaf.germ U x ).hom f = 0) :
    ∃ (V : TopologicalSpace.Opens X.toPresheafedSpace) (i : V U) (_ : x V), (X.presheaf.map i.op).hom f = 0

    If the germ of a section f is zero in the stalk at x, then f is zero on some neighbourhood around x.

    theorem AlgebraicGeometry.RingedSpace.isUnit_res_of_isUnit_germ (X : AlgebraicGeometry.RingedSpace) (U : TopologicalSpace.Opens X.toPresheafedSpace) (f : (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) (hx : x U) (h : IsUnit ((X.presheaf.germ U x hx).hom f)) :
    ∃ (V : TopologicalSpace.Opens X.toPresheafedSpace) (i : V U) (_ : x V), IsUnit ((X.presheaf.map i.op).hom f)

    If the germ of a section f is a unit in the stalk at x, then f must be a unit on some small neighborhood around x.

    theorem CommRingCat.germ_res_apply {X : TopCat} (F : TopCat.Presheaf CommRingCat X) {U V : TopologicalSpace.Opens X} (i : U V) (x : X) (hx : x U) (s : (F.obj (Opposite.op V))) :
    (F.germ U x hx).hom ((F.map i.op).hom s) = (F.germ V x ).hom s

    Specialize TopCat.Presheaf.germ_res_apply to sheaves of rings.

    This is unfortunately needed because the results on presheaves are stated using the ConcreteCategory.instFunLike instance, which is not reducibly equal to the actual coercion of morphisms in CommRingCat to functions.

    theorem CommRingCat.germ_res_apply' {X : TopCat} (F : TopCat.Presheaf CommRingCat X) {U V : TopologicalSpace.Opens X} (i : Opposite.op V Opposite.op U) (x : X) (hx : x U) (s : (F.obj (Opposite.op V))) :
    (F.germ U x hx).hom ((F.map i).hom s) = (F.germ V x ).hom s

    Specialize TopCat.Presheaf.germ_res_apply' to sheaves of rings.

    This is unfortunately needed because the results on presheaves are stated using the ConcreteCategory.instFunLike instance, which is not reducibly equal to the actual coercion of morphisms in CommRingCat to functions.

    theorem AlgebraicGeometry.RingedSpace.isUnit_of_isUnit_germ (X : AlgebraicGeometry.RingedSpace) (U : TopologicalSpace.Opens X.toPresheafedSpace) (f : (X.presheaf.obj (Opposite.op U))) (h : ∀ (x : X.toPresheafedSpace) (hx : x U), IsUnit ((X.presheaf.germ U x hx).hom f)) :

    If a section f is a unit in each stalk, f must be a unit.

    def AlgebraicGeometry.RingedSpace.basicOpen (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) :
    TopologicalSpace.Opens X.toPresheafedSpace

    The basic open of a section f is the set of all points x, such that the germ of f at x is a unit.

    Equations
    • X.basicOpen f = { carrier := {x : X.toPresheafedSpace | ∃ (hx : x U), IsUnit ((X.presheaf.germ U x hx).hom f)}, is_open' := }
    Instances For
      theorem AlgebraicGeometry.RingedSpace.mem_basicOpen (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) (hx : x U) :
      x X.basicOpen f IsUnit ((X.presheaf.germ U x hx).hom f)
      @[simp]
      theorem AlgebraicGeometry.RingedSpace.mem_basicOpen' (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) (x : U) :
      x X.basicOpen f IsUnit ((X.presheaf.germ U x ).hom f)

      A variant of mem_basicOpen with bundled x : U.

      @[simp]
      theorem AlgebraicGeometry.RingedSpace.mem_top_basicOpen (X : AlgebraicGeometry.RingedSpace) (f : (X.presheaf.obj (Opposite.op ))) (x : X.toPresheafedSpace) :
      x X.basicOpen f IsUnit ((X.presheaf.Γgerm x).hom f)
      theorem AlgebraicGeometry.RingedSpace.basicOpen_le (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) :
      X.basicOpen f U
      theorem AlgebraicGeometry.RingedSpace.isUnit_res_basicOpen (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) :
      IsUnit ((X.presheaf.map (CategoryTheory.homOfLE ).op).hom f)

      The restriction of a section f to the basic open of f is a unit.

      @[simp]
      theorem AlgebraicGeometry.RingedSpace.basicOpen_res (X : AlgebraicGeometry.RingedSpace) {U V : (TopologicalSpace.Opens X.toPresheafedSpace)ᵒᵖ} (i : U V) (f : (X.presheaf.obj U)) :
      X.basicOpen ((X.presheaf.map i).hom f) = Opposite.unop V X.basicOpen f
      @[simp]
      theorem AlgebraicGeometry.RingedSpace.basicOpen_res_eq (X : AlgebraicGeometry.RingedSpace) {U V : (TopologicalSpace.Opens X.toPresheafedSpace)ᵒᵖ} (i : U V) [CategoryTheory.IsIso i] (f : (X.presheaf.obj U)) :
      X.basicOpen ((X.presheaf.map i).hom f) = X.basicOpen f
      @[simp]
      theorem AlgebraicGeometry.RingedSpace.basicOpen_mul (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f g : (X.presheaf.obj (Opposite.op U))) :
      X.basicOpen (f * g) = X.basicOpen f X.basicOpen g
      @[simp]
      theorem AlgebraicGeometry.RingedSpace.basicOpen_pow (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) (n : ) (h : 0 < n) :
      X.basicOpen (f ^ n) = X.basicOpen f
      theorem AlgebraicGeometry.RingedSpace.basicOpen_of_isUnit (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} {f : (X.presheaf.obj (Opposite.op U))} (hf : IsUnit f) :
      X.basicOpen f = U
      def AlgebraicGeometry.RingedSpace.zeroLocus (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (s : Set (X.presheaf.obj (Opposite.op U))) :
      Set X.toPresheafedSpace

      The zero locus of a set of sections s over an open set U is the closed set consisting of the complement of U and of all points of U, where all elements of f vanish.

      Equations
      • X.zeroLocus s = fs, (↑(X.basicOpen f))
      Instances For
        theorem AlgebraicGeometry.RingedSpace.zeroLocus_isClosed (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (s : Set (X.presheaf.obj (Opposite.op U))) :
        IsClosed (X.zeroLocus s)
        theorem AlgebraicGeometry.RingedSpace.zeroLocus_singleton (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (f : (X.presheaf.obj (Opposite.op U))) :
        X.zeroLocus {f} = (X.basicOpen f).carrier
        @[simp]
        theorem AlgebraicGeometry.RingedSpace.mem_zeroLocus_iff (X : AlgebraicGeometry.RingedSpace) {U : TopologicalSpace.Opens X.toPresheafedSpace} (s : Set (X.presheaf.obj (Opposite.op U))) (x : X.toPresheafedSpace) :
        x X.zeroLocus s fs, xX.basicOpen f