Documentation

Mathlib.Geometry.Manifold.DerivationBundle

Derivation bundle #

In this file we define the derivations at a point of a manifold on the algebra of smooth functions. Moreover, we define the differential of a function in terms of derivations.

The content of this file is not meant to be regarded as an alternative definition to the current tangent bundle but rather as a purely algebraic theory that provides a purely algebraic definition of the Lie algebra for a Lie group.

instance smoothFunctionsAlgebra (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
Algebra 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 )
Equations
instance smooth_functions_tower (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
IsScalarTower 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 ) (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 )
Equations
  • =
def PointedSmoothMap (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (n : ℕ∞) :
MType (max 0 u_4 u_1)

Type synonym, introduced to put a different SMul action on C^n⟮I, M; 𝕜⟯ which is defined as f • r = f(x) * r.

Equations
Instances For

    Type synonym, introduced to put a different SMul action on C^n⟮I, M; 𝕜⟯ which is defined as f • r = f(x) * r.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      instance PointedSmoothMap.instFunLike {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
      FunLike (PointedSmoothMap 𝕜 I M x) M 𝕜
      Equations
      instance PointedSmoothMap.instCommRingTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
      Equations
      instance PointedSmoothMap.instAlgebraTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
      Algebra 𝕜 (PointedSmoothMap 𝕜 I M x)
      Equations
      instance PointedSmoothMap.instInhabitedTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
      Equations
      Equations
      • =
      instance PointedSmoothMap.evalAlgebra {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
      Algebra (PointedSmoothMap 𝕜 I M x) 𝕜

      SmoothMap.evalRingHom gives rise to an algebra structure of C^∞⟮I, M; 𝕜⟯ on 𝕜.

      Equations
      def PointedSmoothMap.eval {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

      With the evalAlgebra algebra structure evaluation is actually an algebra morphism.

      Equations
      Instances For
        theorem PointedSmoothMap.smul_def {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) (f : PointedSmoothMap 𝕜 I M x) (k : 𝕜) :
        f k = f x * k
        instance PointedSmoothMap.instIsScalarTowerTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :
        IsScalarTower 𝕜 (PointedSmoothMap 𝕜 I M x) 𝕜
        Equations
        • =
        @[reducible, inline]
        abbrev PointDerivation {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :
        Type (max (max u_4 u_1) u_1)

        The derivations at a point of a manifold. Some regard this as a possible definition of the tangent space

        Equations
        Instances For
          def SmoothFunction.evalAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

          Evaluation at a point gives rise to a C^∞⟮I, M; 𝕜⟯-linear map between C^∞⟮I, M; 𝕜⟯ and 𝕜.

          Equations
          Instances For
            def Derivation.evalAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (x : M) :

            The evaluation at a point as a linear map.

            Equations
            Instances For
              theorem Derivation.evalAt_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (X : Derivation 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 ) (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 )) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) M 𝕜 ) (x : M) :
              ((Derivation.evalAt x) X) f = (X f) x
              def hfdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : ContMDiffMap I I' M M' } {x : M} {y : M'} (h : f x = y) :

              The heterogeneous differential as a linear map. Instead of taking a function as an argument this differential takes h : f x = y. It is particularly handy to deal with situations where the points on where it has to be evaluated are equal but not definitionally equal.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                def fdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : ContMDiffMap I I' M M' ) (x : M) :

                The homogeneous differential as a linear map.

                Equations
                Instances For
                  @[simp]
                  theorem apply_fdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] (f : ContMDiffMap I I' M M' ) {x : M} (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 ) :
                  ((fdifferential f x) v) g = v (g.comp f)
                  @[simp]
                  theorem apply_hfdifferential {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {f : ContMDiffMap I I' M M' } {x : M} {y : M'} (h : f x = y) (v : PointDerivation I x) (g : ContMDiffMap I' (modelWithCornersSelf 𝕜 𝕜) M' 𝕜 ) :
                  ((hfdifferential h) v) g = ((fdifferential f x) v) g
                  @[simp]
                  theorem fdifferential_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] {E'' : Type u_8} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_9} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type u_10} [TopologicalSpace M''] [ChartedSpace H'' M''] (g : ContMDiffMap I' I'' M' M'' ) (f : ContMDiffMap I I' M M' ) (x : M) :
                  fdifferential (g.comp f) x = fdifferential g (f x) ∘ₗ fdifferential f x