Documentation

Mathlib.Geometry.Manifold.Algebra.SmoothFunctions

Algebraic structures over C^n functions #

In this file, we define instances of algebraic structures over C^n functions.

instance ContMDiffMap.instMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Mul (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instAdd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
Add (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I I' N G n) :
(f * g) = f * g
@[simp]
theorem ContMDiffMap.coe_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I I' N G n) :
(f + g) = f + g
@[simp]
theorem ContMDiffMap.mul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Mul G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
(f * g).comp h = f.comp h * g.comp h
@[simp]
theorem ContMDiffMap.add_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {G : Type u_10} [Add G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f g : ContMDiffMap I'' I' N' G n) (h : ContMDiffMap I I'' N N' n) :
(f + g).comp h = f.comp h + g.comp h
instance ContMDiffMap.instOne {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
One (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instZero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
Zero (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [One G] [TopologicalSpace G] [ChartedSpace H' G] :
1 = 1
@[simp]
theorem ContMDiffMap.coe_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Zero G] [TopologicalSpace G] [ChartedSpace H' G] :
0 = 0
instance ContMDiffMap.instNSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
SMul (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.instPow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Pow (ContMDiffMap I I' N G n)
Equations
@[simp]
theorem ContMDiffMap.coe_pow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
(f ^ n✝) = f ^ n✝
@[simp]
theorem ContMDiffMap.coe_nsmul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (f : ContMDiffMap I I' N G n) (n✝ : ) :
(n✝ f) = n✝ f

Group structure #

In this section we show that C^n functions valued in a Lie group inherit a group structure under pointwise multiplication.

instance ContMDiffMap.semigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Semigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Semigroup (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.addSemigroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddSemigroup G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
Equations
instance ContMDiffMap.monoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
Monoid (ContMDiffMap I I' N G n)
Equations
instance ContMDiffMap.addMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
AddMonoid (ContMDiffMap I I' N G n)
Equations
def ContMDiffMap.coeFnMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
ContMDiffMap I I' N G n →* NG

Coercion to a function as a MonoidHom. Similar to MonoidHom.coeFn.

Equations
Instances For
    def ContMDiffMap.coeFnAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
    ContMDiffMap I I' N G n →+ NG

    Coercion to a function as an AddMonoidHom. Similar to AddMonoidHom.coeFn.

    Equations
    Instances For
      @[simp]
      theorem ContMDiffMap.coeFnMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
      ContMDiffMap.coeFnMonoidHom a✝ a = a✝ a
      @[simp]
      theorem ContMDiffMap.coeFnAddMonoidHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] (a✝ : ContMDiffMap I I' N G n) (a : N) :
      ContMDiffMap.coeFnAddMonoidHom a✝ a = a✝ a
      def ContMDiffMap.compLeftMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffMul I' n G'] {G'' : Type u_11} [Monoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffMul I'' n G''] (φ : G' →* G'') (hφ : ContMDiff I' I'' n φ) :
      ContMDiffMap I I' N G' n →* ContMDiffMap I I'' N G'' n

      For a manifold N and a C^n homomorphism φ between Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

      Equations
      Instances For
        def ContMDiffMap.compLeftAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {G' : Type u_10} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] [ContMDiffAdd I' n G'] {G'' : Type u_11} [AddMonoid G''] [TopologicalSpace G''] [ChartedSpace H'' G''] [ContMDiffAdd I'' n G''] (φ : G' →+ G'') (hφ : ContMDiff I' I'' n φ) :
        ContMDiffMap I I' N G' n →+ ContMDiffMap I I'' N G'' n

        For a manifold N and a C^n homomorphism φ between additive Lie groups G', G'', the 'left-composition-by-φ' group homomorphism from C^n⟮I, N; I', G'⟯ to C^n⟮I, N; I'', G''⟯.

        Equations
        Instances For
          def ContMDiffMap.restrictMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [Monoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
          ContMDiffMap I I' (↥V) G n →* ContMDiffMap I I' (↥U) G n

          For a Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

          Equations
          Instances For
            def ContMDiffMap.restrictAddMonoidHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (G : Type u_10) [AddMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] {U V : TopologicalSpace.Opens N} (h : U V) :
            ContMDiffMap I I' (↥V) G n →+ ContMDiffMap I I' (↥U) G n

            For an additive Lie group G and open sets U ⊆ V in N, the 'restriction' group homomorphism from C^n⟮I, V; I', G⟯ to C^n⟮I, U; I', G⟯.

            Equations
            Instances For
              instance ContMDiffMap.commMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffMul I' n G] :
              Equations
              instance ContMDiffMap.addCommMonoid {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H' G] [ContMDiffAdd I' n G] :
              Equations
              instance ContMDiffMap.group {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
              Group (ContMDiffMap I I' N G n)
              Equations
              instance ContMDiffMap.addGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
              AddGroup (ContMDiffMap I I' N G n)
              Equations
              @[simp]
              theorem ContMDiffMap.coe_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f : ContMDiffMap I I' N G n) :
              f⁻¹ = (⇑f)⁻¹
              @[simp]
              theorem ContMDiffMap.coe_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f : ContMDiffMap I I' N G n) :
              (-f) = -f
              @[simp]
              theorem ContMDiffMap.coe_div {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [Group G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] (f g : ContMDiffMap I I' N G n) :
              (f / g) = f / g
              @[simp]
              theorem ContMDiffMap.coe_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] (f g : ContMDiffMap I I' N G n) :
              (f - g) = f - g
              instance ContMDiffMap.commGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [CommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieGroup I' n G] :
              CommGroup (ContMDiffMap I I' N G n)
              Equations
              instance ContMDiffMap.addCommGroup {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {G : Type u_10} [AddCommGroup G] [TopologicalSpace G] [ChartedSpace H' G] [LieAddGroup I' n G] :
              Equations

              Ring structure #

              In this section we show that C^n functions valued in a C^n ring R inherit a ring structure under pointwise multiplication.

              instance ContMDiffMap.semiring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Semiring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
              Semiring (ContMDiffMap I I' N R n)
              Equations
              instance ContMDiffMap.ring {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
              Ring (ContMDiffMap I I' N R n)
              Equations
              instance ContMDiffMap.commRing {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
              CommRing (ContMDiffMap I I' N R n)
              Equations
              def ContMDiffMap.compLeftRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (N : Type u_6) [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {n : WithTop ℕ∞} {R' : Type u_10} [Ring R'] [TopologicalSpace R'] [ChartedSpace H' R'] [ContMDiffRing I' n R'] {R'' : Type u_11} [Ring R''] [TopologicalSpace R''] [ChartedSpace H'' R''] [ContMDiffRing I'' n R''] (φ : R' →+* R'') (hφ : ContMDiff I' I'' n φ) :
              ContMDiffMap I I' N R' n →+* ContMDiffMap I I'' N R'' n

              For a manifold N and a C^n homomorphism φ between C^n rings R', R'', the 'left-composition-by-φ' ring homomorphism from C^n⟮I, N; I', R'⟯ to C^n⟮I, N; I'', R''⟯.

              Equations
              Instances For
                def ContMDiffMap.restrictRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} (R : Type u_10) [Ring R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] {U V : TopologicalSpace.Opens N} (h : U V) :
                ContMDiffMap I I' (↥V) R n →+* ContMDiffMap I I' (↥U) R n

                For a "C^n ring" R and open sets U ⊆ V in N, the "restriction" ring homomorphism from C^n⟮I, V; I', R⟯ to C^n⟮I, U; I', R⟯.

                Equations
                Instances For
                  def ContMDiffMap.coeFnRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] :
                  ContMDiffMap I I' N R n →+* NR

                  Coercion to a function as a RingHom.

                  Equations
                  Instances For
                    @[simp]
                    theorem ContMDiffMap.coeFnRingHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (a✝ : ContMDiffMap I I' N R n) (a : N) :
                    ContMDiffMap.coeFnRingHom a✝ a = a✝ a
                    def ContMDiffMap.evalRingHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {R : Type u_10} [CommRing R] [TopologicalSpace R] [ChartedSpace H' R] [ContMDiffRing I' n R] (m : N) :
                    ContMDiffMap I I' N R n →+* R

                    Function.eval as a RingHom on the ring of C^n functions.

                    Equations
                    Instances For

                      Semimodule structure #

                      In this section we show that C^n functions valued in a vector space M over a normed field 𝕜 inherit a vector space structure.

                      instance ContMDiffMap.instSMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                      SMul 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)
                      Equations
                      @[simp]
                      theorem ContMDiffMap.coe_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (f : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) :
                      (r f) = r f
                      @[simp]
                      theorem ContMDiffMap.smul_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (r : 𝕜) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
                      (r g).comp h = r g.comp h
                      def ContMDiffMap.coeFnLinearMap {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                      ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n →ₗ[𝕜] NV

                      Coercion to a function as a LinearMap.

                      Equations
                      Instances For
                        @[simp]
                        theorem ContMDiffMap.coeFnLinearMap_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n) (a : N) :
                        ContMDiffMap.coeFnLinearMap a✝ a = a✝ a

                        Algebra structure #

                        In this section we show that C^n functions valued in a normed algebra A over a normed field 𝕜 inherit an algebra structure.

                        def ContMDiffMap.C {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :

                        C^n constant functions as a RingHom.

                        Equations
                        • ContMDiffMap.C = { toFun := fun (c : 𝕜) => fun (x : N) => (algebraMap 𝕜 A) c, , map_one' := , map_mul' := , map_zero' := , map_add' := }
                        Instances For
                          instance ContMDiffMap.algebra {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
                          Algebra 𝕜 (ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n)
                          Equations
                          def ContMDiffMap.coeFnAlgHom {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] :
                          ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n →ₐ[𝕜] NA

                          Coercion to a function as an AlgHom.

                          Equations
                          Instances For
                            @[simp]
                            theorem ContMDiffMap.coeFnAlgHom_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {A : Type u_10} [NormedRing A] [NormedAlgebra 𝕜 A] [ContMDiffRing (modelWithCornersSelf 𝕜 A) n A] (a✝ : ContMDiffMap I (modelWithCornersSelf 𝕜 A) N A n) (a : N) :
                            ContMDiffMap.coeFnAlgHom a✝ a = a✝ a

                            Structure as module over scalar functions #

                            If V is a module over 𝕜, then we show that the space of C^n functions from N to V is naturally a vector space over the ring of C^n functions from N to 𝕜.

                            instance ContMDiffMap.instSMul' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                            SMul (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

                            C^n scalar-valued functions act by left-multiplication on C^n functions.

                            Equations
                            @[simp]
                            theorem ContMDiffMap.smul_comp' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {E'' : Type u_7} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type u_8} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''} {N' : Type u_9} [TopologicalSpace N'] [ChartedSpace H'' N'] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] (f : ContMDiffMap I'' (modelWithCornersSelf 𝕜 𝕜) N' 𝕜 n) (g : ContMDiffMap I'' (modelWithCornersSelf 𝕜 V) N' V n) (h : ContMDiffMap I I'' N N' n) :
                            (f g).comp h = f.comp h g.comp h

                            The left multiplication with a C^n scalar function commutes with composition.

                            instance ContMDiffMap.module' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {N : Type u_6} [TopologicalSpace N] [ChartedSpace H N] {n : WithTop ℕ∞} {V : Type u_10} [NormedAddCommGroup V] [NormedSpace 𝕜 V] :
                            Module (ContMDiffMap I (modelWithCornersSelf 𝕜 𝕜) N 𝕜 n) (ContMDiffMap I (modelWithCornersSelf 𝕜 V) N V n)

                            The space of C^n functions with values in a space V is a module over the space of C^n functions with values in 𝕜.

                            Equations