Documentation

Mathlib.Geometry.Manifold.Algebra.Monoid

C^n monoid #

A C^n monoid is a monoid that is also a C^n manifold, in which multiplication is a C^n map of the product manifold G × G into G.

In this file we define the basic structures to talk about C^n monoids: ContMDiffMul and its additive counterpart ContMDiffAdd. These structures are general enough to also talk about C^n semigroups.

  1. All C^n algebraic structures on G are Prop-valued classes that extend IsManifold I n G. This way we save users from adding both [IsManifold I n G] and [ContMDiffMul I n G] to the assumptions. While many API lemmas hold true without the IsManifold I n G assumption, we're not aware of a mathematically interesting monoid on a topological manifold such that (a) the space is not a IsManifold; (b) the multiplication is C^n at (a, b) in the charts extChartAt I a, extChartAt I b, extChartAt I (a * b).

  2. Because of ModelProd we can't assume, e.g., that a LieGroup is modelled on 𝓘(𝕜, E). So, we formulate the definitions and lemmas for any model.

  3. While smoothness of an operation implies its continuity, lemmas like continuousMul_of_contMDiffMul can't be instances because otherwise Lean would have to search for ContMDiffMul I n G with unknown 𝕜, E, H, and I : ModelWithCorners 𝕜 E H. If users needs [ContinuousMul G] in a proof about a C^n monoid, then they need to either add [ContinuousMul G] as an assumption (worse) or use haveI in the proof (better).

Equations
Instances For
    class ContMDiffAdd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) (G : Type u_4) [Add G] [TopologicalSpace G] [ChartedSpace H G] extends IsManifold I n G :

    Basic hypothesis to talk about a C^n (Lie) additive monoid or a C^n additive semigroup. A C^n additive monoid over G, for example, is obtained by requiring both the instances AddMonoid G and ContMDiffAdd I n G.

    Instances
      class ContMDiffMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) (G : Type u_4) [Mul G] [TopologicalSpace G] [ChartedSpace H G] extends IsManifold I n G :

      Basic hypothesis to talk about a C^n (Lie) monoid or a C^n semigroup. A C^n monoid over G, for example, is obtained by requiring both the instances Monoid G and ContMDiffMul I n G.

      Instances
        theorem ContMDiffMul.of_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {m n : WithTop ℕ∞} (hmn : m n) [h : ContMDiffMul I n G] :
        theorem ContMDiffAdd.of_le {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {m n : WithTop ℕ∞} (hmn : m n) [h : ContMDiffAdd I n G] :
        instance instContMDiffMulOfSomeENatTopOfLEInfty {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop ℕ∞} [ContMDiffMul I (↑) G] [h : ENat.LEInfty a] :
        instance instContMDiffAddOfSomeENatTopOfLEInfty {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop ℕ∞} [ContMDiffAdd I (↑) G] [h : ENat.LEInfty a] :
        instance instContMDiffMulOfTopWithTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop ℕ∞} [ContMDiffMul I G] :
        instance instContMDiffAddOfTopWithTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {a : WithTop ℕ∞} [ContMDiffAdd I G] :
        instance instContMDiffMulOfNatWithTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 2 G] :
        instance instContMDiffAddOfNatWithTopENat {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 2 G] :
        theorem contMDiff_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :
        ContMDiff (I.prod I) I n fun (p : G × G) => p.1 * p.2
        theorem contMDiff_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] :
        ContMDiff (I.prod I) I n fun (p : G × G) => p.1 + p.2
        theorem continuousMul_of_contMDiffMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] :

        If the multiplication is C^n, then it is continuous. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures].

        theorem continuousAdd_of_contMDiffAdd {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) (n : WithTop ℕ∞) {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] :

        If the addition is C^n, then it is continuous. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures].

        theorem ContMDiffWithinAt.mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : MG} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
        ContMDiffWithinAt I' I n (f * g) s x
        theorem ContMDiffWithinAt.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : MG} {s : Set M} {x : M} (hf : ContMDiffWithinAt I' I n f s x) (hg : ContMDiffWithinAt I' I n g s x) :
        ContMDiffWithinAt I' I n (f + g) s x
        theorem ContMDiffAt.mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : MG} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
        ContMDiffAt I' I n (f * g) x
        theorem ContMDiffAt.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : MG} {x : M} (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
        ContMDiffAt I' I n (f + g) x
        theorem ContMDiffOn.mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : MG} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
        ContMDiffOn I' I n (f * g) s
        theorem ContMDiffOn.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : MG} {s : Set M} (hf : ContMDiffOn I' I n f s) (hg : ContMDiffOn I' I n g s) :
        ContMDiffOn I' I n (f + g) s
        theorem ContMDiff.mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffMul I n G] {f g : MG} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
        ContMDiff I' I n (f * g)
        theorem ContMDiff.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] [ContMDiffAdd I n G] {f g : MG} (hf : ContMDiff I' I n f) (hg : ContMDiff I' I n g) :
        ContMDiff I' I n (f + g)
        theorem contMDiff_mul_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
        ContMDiff I I n fun (x : G) => a * x
        theorem contMDiff_add_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
        ContMDiff I I n fun (x : G) => a + x
        theorem contMDiffAt_mul_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a b : G} :
        ContMDiffAt I I n (fun (x : G) => a * x) b
        theorem contMDiffAt_add_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a b : G} :
        ContMDiffAt I I n (fun (x : G) => a + x) b
        theorem contMDiff_mul_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a : G} :
        ContMDiff I I n fun (x : G) => x * a
        theorem contMDiff_add_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a : G} :
        ContMDiff I I n fun (x : G) => x + a
        theorem contMDiffAt_mul_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {a b : G} :
        ContMDiffAt I I n (fun (x : G) => x * a) b
        theorem contMDiffAt_add_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {n : WithTop ℕ∞} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {a b : G} :
        ContMDiffAt I I n (fun (x : G) => x + a) b
        theorem mdifferentiable_mul_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a : G} :
        MDifferentiable I I fun (x : G) => a * x
        theorem mdifferentiable_add_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a : G} :
        MDifferentiable I I fun (x : G) => a + x
        theorem mdifferentiableAt_mul_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a b : G} :
        MDifferentiableAt I I (fun (x : G) => a * x) b
        theorem mdifferentiableAt_add_left {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a b : G} :
        MDifferentiableAt I I (fun (x : G) => a + x) b
        theorem mdifferentiable_mul_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a : G} :
        MDifferentiable I I fun (x : G) => x * a
        theorem mdifferentiable_add_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a : G} :
        MDifferentiable I I fun (x : G) => x + a
        theorem mdifferentiableAt_mul_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I 1 G] {a b : G} :
        MDifferentiableAt I I (fun (x : G) => x * a) b
        theorem mdifferentiableAt_add_right {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Add G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I 1 G] {a b : G} :
        MDifferentiableAt I I (fun (x : G) => x + a) b
        def smoothLeftMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g : G) [ContMDiffMul I (↑) G] :
        ContMDiffMap I I G G

        Left multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑳. Lemmas involving smoothLeftMul with the notation 𝑳 usually use L instead of 𝑳 in the names.

        Equations
        Instances For
          def smoothRightMul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g : G) [ContMDiffMul I (↑) G] :
          ContMDiffMap I I G G

          Right multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑹. Lemmas involving smoothRightMul with the notation 𝑹 usually use R instead of 𝑹 in the names.

          Equations
          Instances For

            Left multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑳. Lemmas involving smoothLeftMul with the notation 𝑳 usually use L instead of 𝑳 in the names.

            Equations
            Instances For

              Right multiplication by g. It is meant to mimic the usual notation in Lie groups. Used mostly through the notation 𝑹. Lemmas involving smoothRightMul with the notation 𝑹 usually use R instead of 𝑹 in the names.

              Equations
              Instances For
                @[simp]
                theorem L_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g h : G) [ContMDiffMul I (↑) G] :
                (smoothLeftMul I g) h = g * h
                @[simp]
                theorem R_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_4} [Mul G] [TopologicalSpace G] [ChartedSpace H G] (g h : G) [ContMDiffMul I (↑) G] :
                (smoothRightMul I g) h = h * g
                @[simp]
                theorem L_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_8} [Semigroup G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I (↑) G] (g h : G) :
                @[simp]
                theorem R_mul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G : Type u_8} [Semigroup G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I (↑) G] (g h : G) :
                theorem smoothLeftMul_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G' : Type u_8} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H G'] [ContMDiffMul I (↑) G'] (g' : G') :
                (smoothLeftMul I g') 1 = g'
                theorem smoothRightMul_one {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (I : ModelWithCorners 𝕜 E H) {G' : Type u_8} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H G'] [ContMDiffMul I (↑) G'] (g' : G') :
                (smoothRightMul I g') 1 = g'
                instance ContMDiffMul.prod {n : WithTop ℕ∞} {𝕜 : Type u_8} [NontriviallyNormedField 𝕜] {E : Type u_9} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_10} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (G : Type u_11) [TopologicalSpace G] [ChartedSpace H G] [Mul G] [ContMDiffMul I n G] {E' : Type u_12} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_13} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (G' : Type u_14) [TopologicalSpace G'] [ChartedSpace H' G'] [Mul G'] [ContMDiffMul I' n G'] :
                ContMDiffMul (I.prod I') n (G × G')
                instance ContMDiffAdd.prod {n : WithTop ℕ∞} {𝕜 : Type u_8} [NontriviallyNormedField 𝕜] {E : Type u_9} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_10} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (G : Type u_11) [TopologicalSpace G] [ChartedSpace H G] [Add G] [ContMDiffAdd I n G] {E' : Type u_12} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_13} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (G' : Type u_14) [TopologicalSpace G'] [ChartedSpace H' G'] [Add G'] [ContMDiffAdd I' n G'] :
                ContMDiffAdd (I.prod I') n (G × G')
                theorem contMDiff_pow {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] (i : ) :
                ContMDiff I I n fun (a : G) => a ^ i
                theorem contMDiff_nsmul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] (i : ) :
                ContMDiff I I n fun (a : G) => i a
                structure ContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 E' H') (n : WithTop ℕ∞) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [AddMonoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [AddMonoid G'] extends G →+ G' :
                Type (max u_8 u_9)

                Morphism of additive C^n monoids.

                Instances For
                  structure ContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 E' H') (n : WithTop ℕ∞) (G : Type u_8) [TopologicalSpace G] [ChartedSpace H G] [Monoid G] (G' : Type u_9) [TopologicalSpace G'] [ChartedSpace H' G'] [Monoid G'] extends G →* G' :
                  Type (max u_8 u_9)

                  Morphism of C^n monoids.

                  Instances For
                    instance instOneContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    Equations
                    instance instZeroContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    Equations
                    instance instInhabitedContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    Equations
                    instance instInhabitedContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    Equations
                    instance instFunLikeContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    FunLike (ContMDiffMonoidMorphism I I' n G G') G G'
                    Equations
                    instance instFunLikeContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    Equations
                    instance instMonoidHomClassContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    instance instAddMonoidHomClassContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    instance instContinuousMapClassContMDiffMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [Monoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [Monoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :
                    instance instContinuousMapClassContMDiffAddMonoidMorphism {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [AddMonoid G] [TopologicalSpace G] [ChartedSpace H G] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {I' : ModelWithCorners 𝕜 E' H'} {G' : Type u_7} [AddMonoid G'] [TopologicalSpace G'] [ChartedSpace H' G'] :

                    Differentiability of finite point-wise sums and products, and powers #

                    Finite point-wise products (resp. sums), and powers, of C^n functions M → G (at x/on s) into a commutative monoid G are C^n at x/on s.

                    theorem ContMDiffWithinAt.prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x₀ : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x₀) :
                    ContMDiffWithinAt I' I n (fun (x : M) => it, f i x) s x₀
                    theorem ContMDiffWithinAt.sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x₀ : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x₀) :
                    ContMDiffWithinAt I' I n (fun (x : M) => it, f i x) s x₀
                    theorem contMDiffWithinAt_finprod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.mulSupport (f i)) {x₀ : M} (h : ∀ (i : ι), ContMDiffWithinAt I' I n (f i) s x₀) :
                    ContMDiffWithinAt I' I n (fun (x : M) => ∏ᶠ (i : ι), f i x) s x₀
                    theorem contMDiffWithinAt_finsum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.support (f i)) {x₀ : M} (h : ∀ (i : ι), ContMDiffWithinAt I' I n (f i) s x₀) :
                    ContMDiffWithinAt I' I n (fun (x : M) => ∑ᶠ (i : ι), f i x) s x₀
                    theorem contMDiffWithinAt_finset_prod' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x) :
                    ContMDiffWithinAt I' I n (∏ it, f i) s x
                    theorem contMDiffWithinAt_finset_sum' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x) :
                    ContMDiffWithinAt I' I n (∑ it, f i) s x
                    theorem contMDiffWithinAt_finset_prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x) :
                    ContMDiffWithinAt I' I n (fun (x : M) => it, f i x) s x
                    theorem contMDiffWithinAt_finset_sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffWithinAt I' I n (f i) s x) :
                    ContMDiffWithinAt I' I n (fun (x : M) => it, f i x) s x
                    theorem ContMDiffAt.prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x₀ : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x₀) :
                    ContMDiffAt I' I n (fun (x : M) => it, f i x) x₀
                    theorem ContMDiffAt.sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x₀ : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x₀) :
                    ContMDiffAt I' I n (fun (x : M) => it, f i x) x₀
                    theorem contMDiffAt_finprod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x₀ : M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.mulSupport (f i)) (h : ∀ (i : ι), ContMDiffAt I' I n (f i) x₀) :
                    ContMDiffAt I' I n (fun (x : M) => ∏ᶠ (i : ι), f i x) x₀
                    theorem contMDiffAt_finsum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x₀ : M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.support (f i)) (h : ∀ (i : ι), ContMDiffAt I' I n (f i) x₀) :
                    ContMDiffAt I' I n (fun (x : M) => ∑ᶠ (i : ι), f i x) x₀
                    theorem contMDiffAt_finset_prod' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x) :
                    ContMDiffAt I' I n (∏ it, f i) x
                    theorem contMDiffAt_finset_sum' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x) :
                    ContMDiffAt I' I n (∑ it, f i) x
                    theorem contMDiffAt_finset_prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x) :
                    ContMDiffAt I' I n (fun (x : M) => it, f i x) x
                    theorem contMDiffAt_finset_sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffAt I' I n (f i) x) :
                    ContMDiffAt I' I n (fun (x : M) => it, f i x) x
                    theorem contMDiffOn_finprod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.mulSupport (f i)) (h : ∀ (i : ι), ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (fun (x : M) => ∏ᶠ (i : ι), f i x) s
                    theorem contMDiffOn_finsum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {f : ιMG} (lf : LocallyFinite fun (i : ι) => Function.support (f i)) (h : ∀ (i : ι), ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (fun (x : M) => ∑ᶠ (i : ι), f i x) s
                    theorem contMDiffOn_finset_prod' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (∏ it, f i) s
                    theorem contMDiffOn_finset_sum' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (∑ it, f i) s
                    theorem contMDiffOn_finset_prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (fun (x : M) => it, f i x) s
                    theorem contMDiffOn_finset_sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {t : Finset ι} {f : ιMG} (h : it, ContMDiffOn I' I n (f i) s) :
                    ContMDiffOn I' I n (fun (x : M) => it, f i x) s
                    theorem ContMDiff.prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n fun (x : M) => it, f i x
                    theorem ContMDiff.sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n fun (x : M) => it, f i x
                    theorem contMDiff_finset_prod' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n (∏ it, f i)
                    theorem contMDiff_finset_sum' {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n (∑ it, f i)
                    theorem contMDiff_finset_prod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n fun (x : M) => it, f i x
                    theorem contMDiff_finset_sum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {t : Finset ι} {f : ιMG} (h : it, ContMDiff I' I n (f i)) :
                    ContMDiff I' I n fun (x : M) => it, f i x
                    theorem contMDiff_finprod {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ιMG} (h : ∀ (i : ι), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ι) => Function.mulSupport (f i)) :
                    ContMDiff I' I n fun (x : M) => ∏ᶠ (i : ι), f i x
                    theorem contMDiff_finsum {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ιMG} (h : ∀ (i : ι), ContMDiff I' I n (f i)) (hfin : LocallyFinite fun (i : ι) => Function.support (f i)) :
                    ContMDiff I' I n fun (x : M) => ∑ᶠ (i : ι), f i x
                    theorem contMDiff_finprod_cond {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ιMG} {p : ιProp} (hc : ∀ (i : ι), p iContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ι) => Function.mulSupport (f i)) :
                    ContMDiff I' I n fun (x : M) => ∏ᶠ (i : ι) (_ : p i), f i x
                    theorem contMDiff_finsum_cond {ι : Type u_1} {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {f : ιMG} {p : ιProp} (hc : ∀ (i : ι), p iContMDiff I' I n (f i)) (hf : LocallyFinite fun (i : ι) => Function.support (f i)) :
                    ContMDiff I' I n fun (x : M) => ∑ᶠ (i : ι) (_ : p i), f i x
                    theorem ContMDiffWithinAt.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {g : MG} (hg : ContMDiffWithinAt I' I n g s x) (m : ) :
                    ContMDiffWithinAt I' I n (fun (x : M) => g x ^ m) s x
                    theorem ContMDiffWithinAt.nsmul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {x : M} {g : MG} (hg : ContMDiffWithinAt I' I n g s x) (m : ) :
                    ContMDiffWithinAt I' I n (fun (x : M) => m g x) s x
                    theorem ContMDiffAt.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {g : MG} (hg : ContMDiffAt I' I n g x) (m : ) :
                    ContMDiffAt I' I n (fun (x : M) => g x ^ m) x
                    theorem ContMDiffAt.nsmul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {x : M} {g : MG} (hg : ContMDiffAt I' I n g x) (m : ) :
                    ContMDiffAt I' I n (fun (x : M) => m g x) x
                    theorem ContMDiffOn.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {g : MG} (hg : ContMDiffOn I' I n g s) (m : ) :
                    ContMDiffOn I' I n (fun (x : M) => g x ^ m) s
                    theorem ContMDiffOn.nsmul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {s : Set M} {g : MG} (hg : ContMDiffOn I' I n g s) (m : ) :
                    ContMDiffOn I' I n (fun (x : M) => m g x) s
                    theorem ContMDiff.pow {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [CommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {g : MG} (hg : ContMDiff I' I n g) (m : ) :
                    ContMDiff I' I n fun (x : M) => g x ^ m
                    theorem ContMDiff.nsmul {𝕜 : Type u_2} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [TopologicalSpace H] {E : Type u_4} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [AddCommMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_7} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [TopologicalSpace M] [ChartedSpace H' M] {g : MG} (hg : ContMDiff I' I n g) (m : ) :
                    ContMDiff I' I n fun (x : M) => m g x
                    theorem ContMDiffWithinAt.div_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {s : Set M} {x : M} (c : G) (hf : ContMDiffWithinAt I' I n f s x) :
                    ContMDiffWithinAt I' I n (fun (x : M) => f x / c) s x
                    theorem ContMDiffWithinAt.sub_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {s : Set M} {x : M} (c : G) (hf : ContMDiffWithinAt I' I n f s x) :
                    ContMDiffWithinAt I' I n (fun (x : M) => f x - c) s x
                    theorem ContMDiffAt.div_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {x : M} (c : G) (hf : ContMDiffAt I' I n f x) :
                    ContMDiffAt I' I n (fun (x : M) => f x / c) x
                    theorem ContMDiffAt.sub_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {x : M} (c : G) (hf : ContMDiffAt I' I n f x) :
                    ContMDiffAt I' I n (fun (x : M) => f x - c) x
                    theorem ContMDiffOn.div_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {s : Set M} (c : G) (hf : ContMDiffOn I' I n f s) :
                    ContMDiffOn I' I n (fun (x : M) => f x / c) s
                    theorem ContMDiffOn.sub_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} {s : Set M} (c : G) (hf : ContMDiffOn I' I n f s) :
                    ContMDiffOn I' I n (fun (x : M) => f x - c) s
                    theorem ContMDiff.div_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [DivInvMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} (c : G) (hf : ContMDiff I' I n f) :
                    ContMDiff I' I n fun (x : M) => f x / c
                    theorem ContMDiff.sub_const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_4} [SubNegMonoid G] [TopologicalSpace G] [ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_5} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type u_6} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_7} [TopologicalSpace M] [ChartedSpace H' M] {f : MG} (c : G) (hf : ContMDiff I' I n f) :
                    ContMDiff I' I n fun (x : M) => f x - c