Documentation

Mathlib.Combinatorics.SetFamily.LYM

Lubell-Yamamoto-Meshalkin inequality and Sperner's theorem #

This file proves the local LYM and LYM inequalities as well as Sperner's theorem.

Main declarations #

TODO #

Prove upward local LYM.

Provide equality cases. Local LYM gives that the equality case of LYM and Sperner is precisely when ๐’œ is a middle layer.

falling could be useful more generally in grade orders.

References #

Tags #

shadow, lym, slice, sperner, antichain

Local LYM inequality #

theorem Finset.local_lubell_yamamoto_meshalkin_inequality_mul {ฮฑ : Type u_2} [DecidableEq ฮฑ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} {r : โ„•} (h๐’œ : Set.Sized r โ†‘๐’œ) :
๐’œ.card * r โ‰ค ๐’œ.shadow.card * (Fintype.card ฮฑ - r + 1)

The downward local LYM inequality, with cancelled denominators. ๐’œ takes up less of ฮฑ^(r) (the finsets of card r) than โˆ‚๐’œ takes up of ฮฑ^(r - 1).

theorem Finset.card_mul_le_card_shadow_mul {ฮฑ : Type u_2} [DecidableEq ฮฑ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} {r : โ„•} (h๐’œ : Set.Sized r โ†‘๐’œ) :
๐’œ.card * r โ‰ค ๐’œ.shadow.card * (Fintype.card ฮฑ - r + 1)

The downward local LYM inequality, with cancelled denominators. ๐’œ takes up less of ฮฑ^(r) (the finsets of card r) than โˆ‚๐’œ takes up of ฮฑ^(r - 1).

theorem Finset.local_lubell_yamamoto_meshalkin_inequality_div {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [DecidableEq ฮฑ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} {r : โ„•} (hr : r โ‰  0) (h๐’œ : Set.Sized r โ†‘๐’œ) :
โ†‘๐’œ.card / โ†‘((Fintype.card ฮฑ).choose r) โ‰ค โ†‘๐’œ.shadow.card / โ†‘((Fintype.card ฮฑ).choose (r - 1))

The downward local LYM inequality. ๐’œ takes up less of ฮฑ^(r) (the finsets of card r) than โˆ‚๐’œ takes up of ฮฑ^(r - 1).

theorem Finset.card_div_choose_le_card_shadow_div_choose {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [DecidableEq ฮฑ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} {r : โ„•} (hr : r โ‰  0) (h๐’œ : Set.Sized r โ†‘๐’œ) :
โ†‘๐’œ.card / โ†‘((Fintype.card ฮฑ).choose r) โ‰ค โ†‘๐’œ.shadow.card / โ†‘((Fintype.card ฮฑ).choose (r - 1))

The downward local LYM inequality. ๐’œ takes up less of ฮฑ^(r) (the finsets of card r) than โˆ‚๐’œ takes up of ฮฑ^(r - 1).

LYM inequality #

def Finset.falling {ฮฑ : Type u_2} [DecidableEq ฮฑ] (k : โ„•) (๐’œ : Finset (Finset ฮฑ)) :
Finset (Finset ฮฑ)

falling k ๐’œ is all the finsets of cardinality k which are a subset of something in ๐’œ.

Equations
Instances For
    theorem Finset.mem_falling {ฮฑ : Type u_2} [DecidableEq ฮฑ] {k : โ„•} {๐’œ : Finset (Finset ฮฑ)} {s : Finset ฮฑ} :
    s โˆˆ falling k ๐’œ โ†” (โˆƒ t โˆˆ ๐’œ, s โŠ† t) โˆง s.card = k
    theorem Finset.sized_falling {ฮฑ : Type u_2} [DecidableEq ฮฑ] (k : โ„•) (๐’œ : Finset (Finset ฮฑ)) :
    Set.Sized k โ†‘(falling k ๐’œ)
    theorem Finset.slice_subset_falling {ฮฑ : Type u_2} [DecidableEq ฮฑ] (k : โ„•) (๐’œ : Finset (Finset ฮฑ)) :
    ๐’œ.slice k โŠ† falling k ๐’œ
    theorem Finset.falling_zero_subset {ฮฑ : Type u_2} [DecidableEq ฮฑ] (๐’œ : Finset (Finset ฮฑ)) :
    theorem Finset.slice_union_shadow_falling_succ {ฮฑ : Type u_2} [DecidableEq ฮฑ] (k : โ„•) (๐’œ : Finset (Finset ฮฑ)) :
    ๐’œ.slice k โˆช (falling (k + 1) ๐’œ).shadow = falling k ๐’œ
    theorem Finset.IsAntichain.disjoint_slice_shadow_falling {ฮฑ : Type u_2} [DecidableEq ฮฑ] {๐’œ : Finset (Finset ฮฑ)} {m n : โ„•} (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    Disjoint (๐’œ.slice m) (falling n ๐’œ).shadow

    The shadow of falling m ๐’œ is disjoint from the n-sized elements of ๐’œ, thanks to the antichain property.

    theorem Finset.le_card_falling_div_choose {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [DecidableEq ฮฑ] {k : โ„•} {๐’œ : Finset (Finset ฮฑ)} [Fintype ฮฑ] (hk : k โ‰ค Fintype.card ฮฑ) (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    โˆ‘ r โˆˆ range (k + 1), โ†‘(๐’œ.slice (Fintype.card ฮฑ - r)).card / โ†‘((Fintype.card ฮฑ).choose (Fintype.card ฮฑ - r)) โ‰ค โ†‘(falling (Fintype.card ฮฑ - k) ๐’œ).card / โ†‘((Fintype.card ฮฑ).choose (Fintype.card ฮฑ - k))

    A bound on any top part of the sum in LYM in terms of the size of falling k ๐’œ.

    theorem Finset.lubell_yamamoto_meshalkin_inequality_sum_card_div_choose {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    โˆ‘ r โˆˆ range (Fintype.card ฮฑ + 1), โ†‘(๐’œ.slice r).card / โ†‘((Fintype.card ฮฑ).choose r) โ‰ค 1

    The Lubell-Yamamoto-Meshalkin inequality, also known as the LYM inequality.

    If ๐’œ is an antichain, then the sum of the proportion of elements it takes from each layer is less than 1.

    theorem Finset.sum_card_slice_div_choose_le_one {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    โˆ‘ r โˆˆ range (Fintype.card ฮฑ + 1), โ†‘(๐’œ.slice r).card / โ†‘((Fintype.card ฮฑ).choose r) โ‰ค 1

    The Lubell-Yamamoto-Meshalkin inequality, also known as the LYM inequality.

    If ๐’œ is an antichain, then the sum of the proportion of elements it takes from each layer is less than 1.

    theorem Finset.lubell_yamamoto_meshalkin_inequality_sum_inv_choose {๐•œ : Type u_1} {ฮฑ : Type u_2} [LinearOrderedSemifield ๐•œ] [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    โˆ‘ s โˆˆ ๐’œ, (โ†‘((Fintype.card ฮฑ).choose s.card))โปยน โ‰ค 1

    The Lubell-Yamamoto-Meshalkin inequality, also known as the LYM inequality.

    If ๐’œ is an antichain, then the sum of (#ฮฑ.choose #s)โปยน over s โˆˆ ๐’œ is less than 1.

    Sperner's theorem #

    theorem IsAntichain.sperner {ฮฑ : Type u_2} [Fintype ฮฑ] {๐’œ : Finset (Finset ฮฑ)} (h๐’œ : IsAntichain (fun (x1 x2 : Finset ฮฑ) => x1 โŠ† x2) โ†‘๐’œ) :
    ๐’œ.card โ‰ค (Fintype.card ฮฑ).choose (Fintype.card ฮฑ / 2)

    Sperner's theorem. The size of an antichain in Finset ฮฑ is bounded by the size of the maximal layer in Finset ฮฑ. This precisely means that Finset ฮฑ is a Sperner order.