Documentation

Mathlib.Algebra.Order.Field.Defs

Linear ordered (semi)fields #

A linear ordered (semi)field is a (semi)field equipped with a linear order such that

Main Definitions #

@[instance 100]
Equations
  • LinearOrderedField.toLinearOrderedSemifield = LinearOrderedSemifield.mk LinearOrderedField.zpow LinearOrderedField.nnqsmul
theorem mul_inv_le_one {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
a * a⁻¹ 1

Equality holds when a ≠ 0. See mul_inv_cancel.

theorem inv_mul_le_one {α : Type u_1} [LinearOrderedSemifield α] {a : α} :
a⁻¹ * a 1

Equality holds when a ≠ 0. See inv_mul_cancel.

theorem mul_inv_left_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (hb : 0 b) :
a * (a⁻¹ * b) b

Equality holds when a ≠ 0. See mul_inv_cancel_left.

theorem le_mul_inv_left {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (hb : b 0) :
b a * (a⁻¹ * b)

Equality holds when a ≠ 0. See mul_inv_cancel_left.

theorem inv_mul_left_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (hb : 0 b) :
a⁻¹ * (a * b) b

Equality holds when a ≠ 0. See inv_mul_cancel_left.

theorem le_inv_mul_left {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (hb : b 0) :
b a⁻¹ * (a * b)

Equality holds when a ≠ 0. See inv_mul_cancel_left.

theorem mul_inv_right_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) :
a * b * b⁻¹ a

Equality holds when b ≠ 0. See mul_inv_cancel_right.

theorem le_mul_inv_right {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : a 0) :
a a * b * b⁻¹

Equality holds when b ≠ 0. See mul_inv_cancel_right.

theorem inv_mul_right_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : 0 a) :
a * b⁻¹ * b a

Equality holds when b ≠ 0. See inv_mul_cancel_right.

theorem le_inv_mul_right {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} (ha : a 0) :
a a * b⁻¹ * b

Equality holds when b ≠ 0. See inv_mul_cancel_right.

theorem mul_div_mul_left_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} {c : α} (h : 0 a / b) :
c * a / (c * b) a / b

Equality holds when c ≠ 0. See mul_div_mul_left.

theorem le_mul_div_mul_left {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} {c : α} (h : a / b 0) :
a / b c * a / (c * b)

Equality holds when c ≠ 0. See mul_div_mul_left.

theorem mul_div_mul_right_le {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} {c : α} (h : 0 a / b) :
a * c / (b * c) a / b

Equality holds when c ≠ 0. See mul_div_mul_right.

theorem le_mul_div_mul_right {α : Type u_1} [LinearOrderedSemifield α] {a : α} {b : α} {c : α} (h : a / b 0) :
a / b a * c / (b * c)

Equality holds when c ≠ 0. See mul_div_mul_right.