Documentation

Mathlib.CategoryTheory.Shift.Localization

The shift induced on a localized category #

Let C be a category equipped with a shift by a monoid A. A morphism property W on C satisfies W.IsCompatibleWithShift A when for all a : A, a morphism f is in W iff f⟦a⟧' is. When this compatibility is satisfied, then the corresponding localized category can be equipped with a shift by A, and the localization functor is compatible with the shift.

A morphism property W on a category C is compatible with the shift by a monoid A when for all a : A, a morphism f belongs to W if and only if f⟦a⟧' does.

  • condition : ∀ (a : A), W.inverseImage (CategoryTheory.shiftFunctor C a) = W

    the condition that for all a : A, the morphism property W is not changed when we take its inverse image by the shift functor by a

Instances
    theorem CategoryTheory.MorphismProperty.IsCompatibleWithShift.condition {C : Type u₁} :
    ∀ {inst : CategoryTheory.Category.{v₁, u₁} C} {W : CategoryTheory.MorphismProperty C} {A : Type w} {inst_1 : AddMonoid A} {inst_2 : CategoryTheory.HasShift C A} [self : W.IsCompatibleWithShift A] (a : A), W.inverseImage (CategoryTheory.shiftFunctor C a) = W

    the condition that for all a : A, the morphism property W is not changed when we take its inverse image by the shift functor by a

    theorem CategoryTheory.MorphismProperty.IsCompatibleWithShift.iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) {A : Type w} [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] {X : C} {Y : C} (f : X Y) (a : A) :
    W ((CategoryTheory.shiftFunctor C a).map f) W f
    theorem CategoryTheory.MorphismProperty.shift {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) {A : Type w} [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] {X : C} {Y : C} {f : X Y} (hf : W f) (a : A) :
    @[reducible, inline]

    The morphism of localizer from W to W given by the functor shiftFunctor C a when a : A and W is compatible with the shift by A.

    Equations
    Instances For
      @[irreducible]

      When L : C ⥤ D is a localization functor with respect to a morphism property W that is compatible with the shift by a monoid A on C, this is the induced shift on the category D.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[irreducible]
        noncomputable def CategoryTheory.Functor.CommShift.localized {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] (L : CategoryTheory.Functor C D) (W : CategoryTheory.MorphismProperty C) [L.IsLocalization W] (A : Type w) [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] :
        L.CommShift A

        The localization functor L : C ⥤ D is compatible with the shift.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[irreducible]
          noncomputable instance CategoryTheory.HasShift.localization {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) (A : Type w) [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] :
          CategoryTheory.HasShift W.Localization A

          The localized category W.Localization is endowed with the induced shift.

          Equations
          @[irreducible]
          noncomputable instance CategoryTheory.MorphismProperty.commShift_Q {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) (A : Type w) [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] :
          W.Q.CommShift A

          The localization functor W.Q : C ⥤ W.Localization is compatible with the shift.

          Equations
          @[irreducible]
          noncomputable instance CategoryTheory.HasShift.localization' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) (A : Type w) [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] [W.HasLocalization] :
          CategoryTheory.HasShift W.Localization' A

          The localized category W.Localization' is endowed with the induced shift.

          Equations
          @[irreducible]
          noncomputable instance CategoryTheory.MorphismProperty.commShift_Q' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (W : CategoryTheory.MorphismProperty C) (A : Type w) [AddMonoid A] [CategoryTheory.HasShift C A] [W.IsCompatibleWithShift A] [W.HasLocalization] :
          W.Q'.CommShift A

          The localization functor W.Q' : C ⥤ W.Localization' is compatible with the shift.

          Equations

          Auxiliary definition for Functor.commShiftOfLocalization.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            In the context of localization of categories, if a functor is induced by a functor which commutes with the shift, then this functor commutes with the shift.

            Equations
            Instances For