Documentation

Mathlib.CategoryTheory.PathCategory.MorphismProperty

Properties of morphisms in a path category. #

We provide a formulation of induction principles for morphisms in a path category in terms of MorphismProperty. This file is separate from CategoryTheory.PathCategory.Basic in order to reduce transitive imports.

theorem CategoryTheory.Paths.morphismProperty_eq_top (V : Type u₁) [Quiver V] (P : CategoryTheory.MorphismProperty (CategoryTheory.Paths V)) (id : ∀ {v : V}, P (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj v))) (comp : ∀ {u v w : V} (p : CategoryTheory.Paths.of.obj u CategoryTheory.Paths.of.obj v) (q : v w), P pP (CategoryTheory.CategoryStruct.comp p (CategoryTheory.Paths.of.map q))) :
P =

A reformulation of CategoryTheory.Paths.induction in terms of MorphismProperty.

theorem CategoryTheory.Paths.morphismProperty_eq_top' (V : Type u₁) [Quiver V] (P : CategoryTheory.MorphismProperty (CategoryTheory.Paths V)) (id : ∀ {v : V}, P (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj v))) (comp : ∀ {u v w : V} (p : u v) (q : CategoryTheory.Paths.of.obj v CategoryTheory.Paths.of.obj w), P qP (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map p) q)) :
P =

A reformulation of CategoryTheory.Paths.induction' in terms of MorphismProperty.