Documentation

Mathlib.CategoryTheory.PathCategory.Basic

The category paths on a quiver. #

When C is a quiver, paths C is the category of paths.

When the quiver is itself a category #

We provide path_composition : paths C ⥤ C.

We check that the quotient of the path category of a category by the canonical relation (paths are related if they compose to the same path) is equivalent to the original category.

def CategoryTheory.Paths (V : Type u₁) :
Type u₁

A type synonym for the category of paths in a quiver.

Equations
Instances For

    The inclusion of a quiver V into its path category, as a prefunctor.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Paths.of_map {V : Type u₁} [Quiver V] {X✝ Y✝ : V} (f : X✝ Y✝) :
      CategoryTheory.Paths.of.map f = f.toPath
      @[simp]
      theorem CategoryTheory.Paths.of_obj {V : Type u₁} [Quiver V] (X : V) :
      theorem CategoryTheory.Paths.induction_fixed_source {V : Type u₁} [Quiver V] {a : CategoryTheory.Paths V} (P : {b : CategoryTheory.Paths V} → (a b)Prop) (id : P (CategoryTheory.CategoryStruct.id a)) (comp : ∀ {u v : V} (p : a CategoryTheory.Paths.of.obj u) (q : u v), P pP (CategoryTheory.CategoryStruct.comp p (CategoryTheory.Paths.of.map q))) {b : CategoryTheory.Paths V} (f : a b) :
      P f

      To prove a property on morphisms of a path category with given source a, it suffices to prove it for the identity and prove that the property is preserved under composition on the right with length 1 paths.

      theorem CategoryTheory.Paths.induction_fixed_target {V : Type u₁} [Quiver V] {b : CategoryTheory.Paths V} (P : {a : CategoryTheory.Paths V} → (a b)Prop) (id : P (CategoryTheory.CategoryStruct.id b)) (comp : ∀ {u v : V} (p : CategoryTheory.Paths.of.obj v b) (q : u v), P pP (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map q) p)) {a : CategoryTheory.Paths V} (f : a b) :
      P f

      To prove a property on morphisms of a path category with given target b, it suffices to prove it for the identity and prove that the property is preserved under composition on the left with length 1 paths.

      theorem CategoryTheory.Paths.induction {V : Type u₁} [Quiver V] (P : {a b : CategoryTheory.Paths V} → (a b)Prop) (id : ∀ {v : V}, P (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj v))) (comp : ∀ {u v w : V} (p : CategoryTheory.Paths.of.obj u CategoryTheory.Paths.of.obj v) (q : v w), P pP (CategoryTheory.CategoryStruct.comp p (CategoryTheory.Paths.of.map q))) {a b : CategoryTheory.Paths V} (f : a b) :
      P f

      To prove a property on morphisms of a path category, it suffices to prove it for the identity and prove that the property is preserved under composition on the right with length 1 paths.

      theorem CategoryTheory.Paths.induction' {V : Type u₁} [Quiver V] (P : {a b : CategoryTheory.Paths V} → (a b)Prop) (id : ∀ {v : V}, P (CategoryTheory.CategoryStruct.id (CategoryTheory.Paths.of.obj v))) (comp : ∀ {u v w : V} (p : u v) (q : CategoryTheory.Paths.of.obj v CategoryTheory.Paths.of.obj w), P qP (CategoryTheory.CategoryStruct.comp (CategoryTheory.Paths.of.map p) q)) {a b : CategoryTheory.Paths V} (f : a b) :
      P f

      To prove a property on morphisms of a path category, it suffices to prove it for the identity and prove that the property is preserved under composition on the left with length 1 paths.

      Any prefunctor from V lifts to a functor from paths V

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Paths.lift_cons {V : Type u₁} [Quiver V] {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (φ : V ⥤q C) {X Y Z : V} (p : Quiver.Path X Y) (f : Y Z) :
        @[simp]
        theorem CategoryTheory.Paths.lift_toPath {V : Type u₁} [Quiver V] {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (φ : V ⥤q C) {X Y : V} (f : X Y) :
        (CategoryTheory.Paths.lift φ).map f.toPath = φ.map f
        theorem CategoryTheory.Paths.ext_functor {V : Type u₁} [Quiver V] {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {F G : CategoryTheory.Functor (CategoryTheory.Paths V) C} (h_obj : F.obj = G.obj) (h : ∀ (a b : V) (e : a b), F.map e.toPath = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ) (CategoryTheory.CategoryStruct.comp (G.map e.toPath) (CategoryTheory.eqToHom ))) :
        F = G

        Two functors out of a path category are equal when they agree on singleton paths.

        @[simp]
        theorem CategoryTheory.Prefunctor.mapPath_comp' (V : Type u₁) [Quiver V] (W : Type u₂) [Quiver W] (F : V ⥤q W) {X Y Z : CategoryTheory.Paths V} (f : X Y) (g : Y Z) :
        F.mapPath (CategoryTheory.CategoryStruct.comp f g) = (F.mapPath f).comp (F.mapPath g)

        Composition of paths as functor from the path category of a category to the category.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The canonical relation on the path category of a category: two paths are related if they compose to the same morphism.

          Equations
          Instances For

            The functor from a category to the canonical quotient of its path category.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The canonical quotient of the path category of a category is equivalent to the original category.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For