The category of bimodule objects over a pair of monoid objects. #
A bimodule object for a pair of monoid objects, all internal to some monoidal category.
- X : C
- actLeft : CategoryTheory.MonoidalCategoryStruct.tensorObj A.X self.X ⟶ self.X
- one_actLeft : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.one self.X) self.actLeft = (CategoryTheory.MonoidalCategoryStruct.leftUnitor self.X).hom
- left_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight A.mul self.X) self.actLeft = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X A.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actLeft) self.actLeft)
- actRight : CategoryTheory.MonoidalCategoryStruct.tensorObj self.X B.X ⟶ self.X
- actRight_one : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X B.one) self.actRight = (CategoryTheory.MonoidalCategoryStruct.rightUnitor self.X).hom
- right_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X B.mul) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator self.X B.X B.X).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actRight B.X) self.actRight)
- middle_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.actLeft B.X) self.actRight = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator A.X self.X B.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.actRight) self.actLeft)
Instances For
A morphism of bimodule objects.
- hom : M.X ⟶ N.X
- left_act_hom : CategoryTheory.CategoryStruct.comp M.actLeft self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft A.X self.hom) N.actLeft
- right_act_hom : CategoryTheory.CategoryStruct.comp M.actRight self.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.hom B.X) N.actRight
Instances For
The identity morphism on a bimodule object.
Equations
- M.id' = { hom := CategoryTheory.CategoryStruct.id M.X, left_act_hom := ⋯, right_act_hom := ⋯ }
Instances For
Equations
- M.homInhabited = { default := M.id' }
Composition of bimodule object morphisms.
Equations
- Bimod.comp f g = { hom := CategoryTheory.CategoryStruct.comp f.hom g.hom, left_act_hom := ⋯, right_act_hom := ⋯ }
Instances For
Equations
Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A monoid object as a bimodule over itself.
Equations
- Bimod.regular A = { X := A.X, actLeft := A.mul, one_actLeft := ⋯, left_assoc := ⋯, actRight := A.mul, actRight_one := ⋯, right_assoc := ⋯, middle_assoc := ⋯ }
Instances For
Equations
- Bimod.instInhabited A = { default := Bimod.regular A }
The forgetful functor from bimodule objects to the ambient category.
Equations
- Bimod.forget A = { obj := fun (A_1 : Bimod A B) => A_1.X, map := fun {X Y : Bimod A B} (f : X ⟶ Y) => f.hom, map_id := ⋯, map_comp := ⋯ }
Instances For
The underlying object of the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Left action for the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Right action for the tensor product of two bimodules.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Tensor product of two bimodule objects as a bimodule object.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Left whiskering for morphisms of bimodule objects.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Right whiskering for morphisms of bimodule objects.
Equations
- One or more equations did not get rendered due to their size.
Instances For
An auxiliary morphism for the definition of the underlying morphism of the forward component of the associator isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The underlying morphism of the forward component of the associator isomorphism.
Equations
Instances For
An auxiliary morphism for the definition of the underlying morphism of the inverse component of the associator isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The underlying morphism of the inverse component of the associator isomorphism.
Equations
Instances For
The underlying morphism of the forward component of the left unitor isomorphism.
Equations
- Bimod.LeftUnitorBimod.hom P = CategoryTheory.Limits.coequalizer.desc P.actLeft ⋯
Instances For
The underlying morphism of the inverse component of the left unitor isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The underlying morphism of the forward component of the right unitor isomorphism.
Equations
- Bimod.RightUnitorBimod.hom P = CategoryTheory.Limits.coequalizer.desc P.actRight ⋯
Instances For
The underlying morphism of the inverse component of the right unitor isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The associator as a bimodule isomorphism.
Equations
- L.associatorBimod M N = Bimod.isoOfIso { hom := Bimod.AssociatorBimod.hom L M N, inv := Bimod.AssociatorBimod.inv L M N, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
Instances For
The left unitor as a bimodule isomorphism.
Equations
- M.leftUnitorBimod = Bimod.isoOfIso { hom := Bimod.LeftUnitorBimod.hom M, inv := Bimod.LeftUnitorBimod.inv M, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
Instances For
The right unitor as a bimodule isomorphism.
Equations
- M.rightUnitorBimod = Bimod.isoOfIso { hom := Bimod.RightUnitorBimod.hom M, inv := Bimod.RightUnitorBimod.inv M, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯
Instances For
The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.
Equations
- One or more equations did not get rendered due to their size.