Documentation

Mathlib.CategoryTheory.Localization.SmallHom

Shrinking morphisms in localized categories #

Given a class of morphisms W : MorphismProperty C, and two objects X and Y, we introduce a type-class HasSmallLocalizedHom.{w} W X Y which expresses that in the localized category with respect to W, the type of morphisms from X to Y is w-small for a certain universe w. Under this assumption, we define SmallHom.{w} W X Y : Type w as the shrunk type. For any localization functor L : C ⥤ D for W, we provide a bijection SmallHom.equiv.{w} W L : SmallHom.{w} W X Y ≃ (L.obj X ⟶ L.obj Y) that is compatible with the composition of morphisms.

This property holds if the type of morphisms between X and Y in the localized category with respect to W : MorphismProperty C is small.

Instances

    The type of morphisms from X to Y in the localized category with respect to W : MorphismProperty C that is shrunk to Type w when HasSmallLocalizedHom.{w} W X Y holds.

    Equations
    Instances For

      The canonical bijection SmallHom.{w} W X Y ≃ (L.obj X ⟶ L.obj Y) when L is a localization functor for W : MorphismProperty C and that HasSmallLocalizedHom.{w} W X Y holds.

      Equations
      Instances For

        The formal inverse in SmallHom W X Y of a morphism f : Y ⟶ X such that W f.

        Equations
        Instances For

          The action of a localizer morphism on SmallHom.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem CategoryTheory.LocalizerMorphism.equiv_smallHomMap {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] {W₁ : CategoryTheory.MorphismProperty C₁} {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] {W₂ : CategoryTheory.MorphismProperty C₂} {D₁ : Type u₃} [CategoryTheory.Category.{v₃, u₃} D₁] {D₂ : Type u₄} [CategoryTheory.Category.{v₄, u₄} D₂] (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) (L₁ : CategoryTheory.Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : CategoryTheory.Functor C₂ D₂) [L₂.IsLocalization W₂] {X : C₁} {Y : C₁} [CategoryTheory.Localization.HasSmallLocalizedHom W₁ X Y] [CategoryTheory.Localization.HasSmallLocalizedHom W₂ (Φ.functor.obj X) (Φ.functor.obj Y)] (G : CategoryTheory.Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (f : CategoryTheory.Localization.SmallHom W₁ X Y) :
            theorem CategoryTheory.LocalizerMorphism.smallHomMap_comp {C₁ : Type u₁} [CategoryTheory.Category.{v₁, u₁} C₁] {W₁ : CategoryTheory.MorphismProperty C₁} {C₂ : Type u₂} [CategoryTheory.Category.{v₂, u₂} C₂] {W₂ : CategoryTheory.MorphismProperty C₂} (Φ : CategoryTheory.LocalizerMorphism W₁ W₂) {X : C₁} {Y : C₁} {Z : C₁} [CategoryTheory.Localization.HasSmallLocalizedHom W₁ X Y] [CategoryTheory.Localization.HasSmallLocalizedHom W₁ Y Z] [CategoryTheory.Localization.HasSmallLocalizedHom W₁ X Z] [CategoryTheory.Localization.HasSmallLocalizedHom W₂ (Φ.functor.obj X) (Φ.functor.obj Y)] [CategoryTheory.Localization.HasSmallLocalizedHom W₂ (Φ.functor.obj Y) (Φ.functor.obj Z)] [CategoryTheory.Localization.HasSmallLocalizedHom W₂ (Φ.functor.obj X) (Φ.functor.obj Z)] (f : CategoryTheory.Localization.SmallHom W₁ X Y) (g : CategoryTheory.Localization.SmallHom W₁ Y Z) :
            Φ.smallHomMap (f.comp g) = (Φ.smallHomMap f).comp (Φ.smallHomMap g)