Documentation

Mathlib.CategoryTheory.Localization.Opposite

Localization of the opposite category #

If a functor L : C ⥤ D is a localization functor for W : MorphismProperty C, it is shown in this file that L.op : Cᵒᵖ ⥤ Dᵒᵖ is also a localization functor.

If L : C ⥤ D satisfies the universal property of the localisation for W : MorphismProperty C, then L.op also does.

Equations
  • h.op = { inverts := , lift := fun (F : CategoryTheory.Functor Cᵒᵖ E) (hF : W.op.IsInvertedBy F) => (h.lift F.rightOp ).leftOp, fac := , uniq := }
Instances For
    Equations
    • =