Essential surjectivity of the functor induced on composable arrows #
Assuming that L : C ⥤ D
is a localization functor for a class of morphisms W
that has a calculus of left or right fractions, we show in this file
that the functor L.mapComposableArrows n : ComposableArrows C n ⥤ ComposableArrows D n
is essentially surjective for any n : ℕ
.
theorem
CategoryTheory.Localization.essSurj_mapComposableArrows_of_hasRightCalculusOfFractions
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
(L : CategoryTheory.Functor C D)
(W : CategoryTheory.MorphismProperty C)
[L.IsLocalization W]
[W.HasRightCalculusOfFractions]
(n : ℕ)
:
(L.mapComposableArrows n).EssSurj
theorem
CategoryTheory.Localization.essSurj_mapComposableArrows
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
(L : CategoryTheory.Functor C D)
(W : CategoryTheory.MorphismProperty C)
[L.IsLocalization W]
[W.HasLeftCalculusOfFractions]
(n : ℕ)
:
(L.mapComposableArrows n).EssSurj