Documentation

Mathlib.CategoryTheory.Linear.LinearFunctor

Linear Functors #

An additive functor between two R-linear categories is called linear if the induced map on hom types is a morphism of R-modules.

Implementation details #

Functor.Linear is a Prop-valued class, defined by saying that for every two objects X and Y, the map F.map : (X ⟶ Y) → (F.obj X ⟶ F.obj Y) is a morphism of R-modules.

An additive functor F is R-linear provided F.map is an R-module morphism.

  • map_smul : ∀ {X Y : C} (f : X Y) (r : R), F.map (r f) = r F.map f

    the functor induces a linear map on morphisms

Instances
    theorem CategoryTheory.Functor.Linear.map_smul {R : Type u_1} :
    ∀ {inst : Semiring R} {C : Type u_2} {D : Type u_3} {inst_1 : CategoryTheory.Category.{u_4, u_2} C} {inst_2 : CategoryTheory.Category.{u_5, u_3} D} {inst_3 : CategoryTheory.Preadditive C} {inst_4 : CategoryTheory.Preadditive D} {inst_5 : CategoryTheory.Linear R C} {inst_6 : CategoryTheory.Linear R D} {F : CategoryTheory.Functor C D} {inst_7 : F.Additive} [self : CategoryTheory.Functor.Linear R F] {X Y : C} (f : X Y) (r : R), F.map (r f) = r F.map f

    the functor induces a linear map on morphisms

    F.mapLinearMap is an R-linear map whose underlying function is F.map.

    Equations
    Instances For