Reinterpret an additive homomorphism as a ℚ
-linear map. #
def
AddMonoidHom.toRatLinearMap
{M : Type u_1}
{M₂ : Type u_2}
[AddCommGroup M]
[Module ℚ M]
[AddCommGroup M₂]
[Module ℚ M₂]
(f : M →+ M₂)
:
Reinterpret an additive homomorphism as a ℚ
-linear map.
Equations
- f.toRatLinearMap = { toFun := (↑f).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
AddMonoidHom.toRatLinearMap_injective
{M : Type u_1}
{M₂ : Type u_2}
[AddCommGroup M]
[Module ℚ M]
[AddCommGroup M₂]
[Module ℚ M₂]
:
Function.Injective AddMonoidHom.toRatLinearMap
@[simp]
theorem
AddMonoidHom.coe_toRatLinearMap
{M : Type u_1}
{M₂ : Type u_2}
[AddCommGroup M]
[Module ℚ M]
[AddCommGroup M₂]
[Module ℚ M₂]
(f : M →+ M₂)
:
⇑f.toRatLinearMap = ⇑f