Documentation

Mathlib.CategoryTheory.Limits.ConcreteCategory.WithAlgebraicStructures

Colimits in concrete categories with algebraic structures #

Let C be a concrete category and F : J ⥤ C a filtered diagram in C. We discuss some results about colimit F when objects and morphisms in C have some algebraic structures.

Main results #

theorem CategoryTheory.Limits.Concrete.colimit_no_zero_smul_divisor {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type w} [CategoryTheory.Category.{r, w} J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.IsFiltered J] [CategoryTheory.Limits.HasColimit F] (R : Type u_1) [Semiring R] [(c : C) → AddCommMonoid ((CategoryTheory.forget C).obj c)] [(c : C) → Module R ((CategoryTheory.forget C).obj c)] [∀ {c c' : C}, LinearMapClass (c c') R ((CategoryTheory.forget C).obj c) ((CategoryTheory.forget C).obj c')] (r : R) (H : ∃ (j' : J), ∀ (j : J), (j' j)∀ (c : (CategoryTheory.forget C).obj (F.obj j)), r c = 0c = 0) (x : (CategoryTheory.forget C).obj (CategoryTheory.Limits.colimit F)) (hx : r x = 0) :
x = 0

if r has no zero smul divisors for all small-enough sections, then r has no zero smul divisors in the colimit.