The morphism comparing a colimit of limits with the corresponding limit of colimits. #
For F : J × K ⥤ C
there is always a morphism $\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$.
While it is not usually an isomorphism, with additional hypotheses on J
and K
it may be,
in which case we say that "colimits commute with limits".
The prototypical example, proved in CategoryTheory.Limits.FilteredColimitCommutesFiniteLimit
,
is that when C = Type
, filtered colimits commute with finite limits.
References #
- Borceux, Handbook of categorical algebra 1, Section 2.13
- Stacks: Filtered colimits
theorem
CategoryTheory.Limits.map_id_left_eq_curry_map
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (J × K) C)
{j : J}
{k k' : K}
{f : k ⟶ k'}
:
F.map (CategoryTheory.CategoryStruct.id j, f) = ((CategoryTheory.curry.obj F).obj j).map f
theorem
CategoryTheory.Limits.map_id_right_eq_curry_swap_map
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (J × K) C)
{j j' : J}
{f : j ⟶ j'}
{k : K}
:
F.map (f, CategoryTheory.CategoryStruct.id k) = ((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).obj k).map f
noncomputable def
CategoryTheory.Limits.colimitLimitToLimitColimit
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (J × K) C)
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.Limits.HasColimitsOfShape K C]
:
CategoryTheory.Limits.colimit
((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).comp CategoryTheory.Limits.lim) ⟶ CategoryTheory.Limits.limit ((CategoryTheory.curry.obj F).comp CategoryTheory.Limits.colim)
The universal morphism $\colim_k \lim_j F(j,k) → \lim_j \colim_k F(j, k)$.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (J × K) C)
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.Limits.HasColimitsOfShape K C]
(j : J)
(k : K)
:
CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.colimit.ι
((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).comp CategoryTheory.Limits.lim) k)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colimitLimitToLimitColimit F)
(CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj F).comp CategoryTheory.Limits.colim) j)) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).obj k) j)
(CategoryTheory.Limits.colimit.ι ((CategoryTheory.curry.obj F).obj j) k)
Since colimit_limit_to_limit_colimit
is a morphism from a colimit to a limit,
this lemma characterises it.
@[simp]
theorem
CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_assoc
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor (J × K) C)
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.Limits.HasColimitsOfShape K C]
(j : J)
(k : K)
{Z : C}
(h : CategoryTheory.Limits.colim.obj ((CategoryTheory.curry.obj F).obj j) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.colimit.ι
((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).comp CategoryTheory.Limits.lim) k)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colimitLimitToLimitColimit F)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj F).comp CategoryTheory.Limits.colim) j) h)) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).obj k) j)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colimit.ι ((CategoryTheory.curry.obj F).obj j) k) h)
@[simp]
theorem
CategoryTheory.Limits.ι_colimitLimitToLimitColimit_π_apply
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
[Small.{v, u₁} J]
[Small.{v, u₂} K]
(F : CategoryTheory.Functor (J × K) (Type v))
(j : J)
(k : K)
(f : ((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).comp CategoryTheory.Limits.lim).obj k)
:
CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj F).comp CategoryTheory.Limits.colim) j
(CategoryTheory.Limits.colimitLimitToLimitColimit F
(CategoryTheory.Limits.colimit.ι
((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).comp CategoryTheory.Limits.lim) k f)) = CategoryTheory.Limits.colimit.ι ((CategoryTheory.curry.obj F).obj j) k
(CategoryTheory.Limits.limit.π ((CategoryTheory.curry.obj ((CategoryTheory.Prod.swap K J).comp F)).obj k) j f)
noncomputable def
CategoryTheory.Limits.colimitLimitToLimitColimitCone
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.Limits.HasColimitsOfShape K C]
(G : CategoryTheory.Functor J (CategoryTheory.Functor K C))
[CategoryTheory.Limits.HasLimit G]
:
The map colimit_limit_to_limit_colimit
realized as a map of cones.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Limits.colimitLimitToLimitColimitCone_hom
{J : Type u₁}
{K : Type u₂}
[CategoryTheory.Category.{v₁, u₁} J]
[CategoryTheory.Category.{v₂, u₂} K]
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasLimitsOfShape J C]
[CategoryTheory.Limits.HasColimitsOfShape K C]
(G : CategoryTheory.Functor J (CategoryTheory.Functor K C))
[CategoryTheory.Limits.HasLimit G]
:
(CategoryTheory.Limits.colimitLimitToLimitColimitCone G).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.colim.map (CategoryTheory.Limits.limitIsoSwapCompLim G).hom)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.colimitLimitToLimitColimit (CategoryTheory.uncurry.obj G))
(CategoryTheory.Limits.lim.map
(CategoryTheory.whiskerRight (CategoryTheory.currying.unitIso.app G).inv CategoryTheory.Limits.colim)))