The category of quivers #
The category of (bundled) quivers, and the free/forgetful adjunction between Cat
and Quiv
.
Category of quivers.
Equations
Instances For
Equations
- CategoryTheory.Quiv.instCoeSortType = { coe := CategoryTheory.Bundled.α }
Equations
- CategoryTheory.Quiv.instInhabited = { default := CategoryTheory.Quiv.of (Quiver.Empty PEmpty.{?u.3 + 2} ) }
The forgetful functor from categories to quivers.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.Quiv.forget_map :
∀ {X Y : CategoryTheory.Cat} (F : X ⟶ Y), CategoryTheory.Quiv.forget.map F = F.toPrefunctor
The identity in the category of quivers equals the identity prefunctor.
theorem
CategoryTheory.Quiv.comp_eq_comp
{X : CategoryTheory.Quiv}
{Y : CategoryTheory.Quiv}
{Z : CategoryTheory.Quiv}
(F : X ⟶ Y)
(G : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp F G = F ⋙q G
Composition in the category of quivers equals prefunctor composition.
The functor sending each quiver to its path category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.Cat.free_map_obj :
∀ {X Y : CategoryTheory.Quiv} (F : X ⟶ Y)
(X_1 : ↑((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths ↑V)) X)),
(CategoryTheory.Cat.free.map F).obj X_1 = F.obj X_1
@[simp]
theorem
CategoryTheory.Cat.free_map_map :
∀ {X Y : CategoryTheory.Quiv} (F : X ⟶ Y)
{X_1 Y_1 : ↑((fun (V : CategoryTheory.Quiv) => CategoryTheory.Cat.of (CategoryTheory.Paths ↑V)) X)} (f : X_1 ⟶ Y_1),
(CategoryTheory.Cat.free.map F).map f = Prefunctor.mapPath F f
def
CategoryTheory.Quiv.lift
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
:
Any prefunctor into a category lifts to a functor from the path category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Quiv.lift_map
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
:
∀ {X Y : CategoryTheory.Paths V} (f : X ⟶ Y),
(CategoryTheory.Quiv.lift F).map f = CategoryTheory.composePath (F.mapPath f)
@[simp]
theorem
CategoryTheory.Quiv.lift_obj
{V : Type u}
[Quiver V]
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
(F : V ⥤q C)
(X : CategoryTheory.Paths V)
:
(CategoryTheory.Quiv.lift F).obj X = F.obj X
The adjunction between forming the free category on a quiver, and forgetting a category to a quiver.
Equations
- One or more equations did not get rendered due to their size.