Documentation

Mathlib.CategoryTheory.Category.Cat.Limit

The category of small categories has all small limits. #

An object in the limit consists of a family of objects, which are carried to one another by the functors in the diagram. A morphism between two such objects is a family of morphisms between the corresponding objects, which are carried to one another by the action on morphisms of the functors in the diagram.

Future work #

Can the indexing category live in a lower universe?

Auxiliary definition: the diagram whose limit gives the morphism space between two objects of the limit category.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Auxiliary definition: the cone over the limit category.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Auxiliary definition: the universal morphism to the proposed limit cone.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitConeLift_obj {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J CategoryTheory.Cat) (s : CategoryTheory.Limits.Cone F) (a✝ : { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } }.pt) :
        (CategoryTheory.Cat.HasLimits.limitConeLift F s).obj a✝ = CategoryTheory.Limits.limit.lift (F.comp CategoryTheory.Cat.objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } a✝
        @[simp]
        theorem CategoryTheory.Cat.HasLimits.limitConeLift_map {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J CategoryTheory.Cat) (s : CategoryTheory.Limits.Cone F) {X✝ Y✝ : s.pt} (f : X✝ Y✝) :
        (CategoryTheory.Cat.HasLimits.limitConeLift F s).map f = CategoryTheory.Limits.Types.Limit.mk (CategoryTheory.Cat.HasLimits.homDiagram (CategoryTheory.Limits.limit.lift (F.comp CategoryTheory.Cat.objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } X✝) (CategoryTheory.Limits.limit.lift (F.comp CategoryTheory.Cat.objects) { pt := s.pt, π := { app := fun (j : J) => (s.app j).obj, naturality := } } Y✝)) (fun (j : J) => CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ) (CategoryTheory.CategoryStruct.comp ((s.app j).map f) (CategoryTheory.eqToHom )))

        The category of small categories has all small limits.