A complete abelian category with enough injectives and a separator has an injective coseparator #
Future work #
- Once we know that Grothendieck categories have enough injectives, we can use this to conclude that Grothendieck categories have an injective coseparator.
References #
- [Peter J Freyd, Abelian Categories (Theorem 3.37)][freyd1964abelian]
theorem
CategoryTheory.Abelian.has_injective_coseparator
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Limits.HasLimits C]
[CategoryTheory.EnoughInjectives C]
(G : C)
(hG : CategoryTheory.IsSeparator G)
:
∃ (G : C), CategoryTheory.Injective G ∧ CategoryTheory.IsCoseparator G
theorem
CategoryTheory.Abelian.has_projective_separator
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.Limits.HasColimits C]
[CategoryTheory.EnoughProjectives C]
(G : C)
(hG : CategoryTheory.IsCoseparator G)
:
∃ (G : C), CategoryTheory.Projective G ∧ CategoryTheory.IsSeparator G