Documentation

Mathlib.Analysis.NormedSpace.DualNumber

Results on DualNumber R related to the norm #

These are just restatements of similar statements about TrivSqZeroExt R M.

Main results #

@[simp]
theorem DualNumber.exp_eps (𝕜 : Type u_1) {R : Type u_2} [Field 𝕜] [CharZero 𝕜] [CommRing R] [Algebra 𝕜 R] [UniformSpace R] [TopologicalRing R] [T2Space R] :
NormedSpace.exp 𝕜 DualNumber.eps = 1 + DualNumber.eps
@[simp]
theorem DualNumber.exp_smul_eps (𝕜 : Type u_1) {R : Type u_2} [Field 𝕜] [CharZero 𝕜] [CommRing R] [Algebra 𝕜 R] [UniformSpace R] [TopologicalRing R] [T2Space R] (r : R) :
NormedSpace.exp 𝕜 (r DualNumber.eps) = 1 + r DualNumber.eps