Results on TrivSqZeroExt R M
related to the norm #
This file contains results about NormedSpace.exp
for TrivSqZeroExt
.
It also contains a definition of the $โ^1$ norm,
which defines $\|r + m\| \coloneqq \|r\| + \|m\|$.
This is not a particularly canonical choice of definition,
but it is sufficient to provide a NormedAlgebra
instance,
and thus enables NormedSpace.exp_add_of_commute
to be used on TrivSqZeroExt
.
If the non-canonicity becomes problematic in future,
we could keep the collection of instances behind an open scoped
.
Main results #
TrivSqZeroExt.fst_exp
TrivSqZeroExt.snd_exp
TrivSqZeroExt.exp_inl
TrivSqZeroExt.exp_inr
- The $โ^1$ norm on
TrivSqZeroExt
:TrivSqZeroExt.instL1SeminormedAddCommGroup
TrivSqZeroExt.instL1SeminormedRing
TrivSqZeroExt.instL1SeminormedCommRing
TrivSqZeroExt.instL1BoundedSMul
TrivSqZeroExt.instL1NormedAddCommGroup
TrivSqZeroExt.instL1NormedRing
TrivSqZeroExt.instL1NormedCommRing
TrivSqZeroExt.instL1NormedSpace
TrivSqZeroExt.instL1NormedAlgebra
TODO #
- Generalize more of these results to non-commutative
R
. In principle, under sufficient conditions we should expect(exp ๐ x).snd = โซ t in 0..1, exp ๐ (t โข x.fst) โข op (exp ๐ ((1 - t) โข x.fst)) โข x.snd
(Physics.SE, and https://link.springer.com/chapter/10.1007/978-3-540-44953-9_2).
If NormedSpace.exp R x.fst
converges to e
then (NormedSpace.exp R x).snd
converges to e โข x.snd
.
If NormedSpace.exp R x.fst
converges to e
then NormedSpace.exp R x
converges to inl e + inr (e โข x.snd)
.
Polar form of trivial-square-zero extension.
More convenient version of TrivSqZeroExt.eq_smul_exp_of_invertible
for when R
is a
field.
The $โ^1$ norm on the trivial square zero extension #
Equations
Equations
Equations
Equations
Equations
Equations
Equations
- TrivSqZeroExt.instL1NormedSpace ๐ = inferInstanceAs (NormedSpace ๐ (WithLp 1 (R ร M)))