The additive circle as a normed group #
We define the normed group structure on AddCircle p
, for p : ℝ
. For example if p = 1
then:
‖(x : AddCircle 1)‖ = |x - round x|
for any x : ℝ
(see UnitAddCircle.norm_eq
).
Main definitions: #
AddCircle.norm_eq
: a characterisation of the norm onAddCircle p
TODO #
- The fact
InnerProductGeometry.angle (Real.cos θ) (Real.sin θ) = ‖(θ : Real.Angle)‖
Equations
- AddCircle.instNormedAddCommGroupReal p = (AddSubgroup.zmultiples p).normedAddCommGroupQuotient
theorem
AddCircle.closedBall_eq_univ_of_half_period_le
(p : ℝ)
(hp : p ≠ 0)
(x : AddCircle p)
{ε : ℝ}
(hε : |p| / 2 ≤ ε)
:
Metric.closedBall x ε = Set.univ
@[simp]
theorem
AddCircle.coe_real_preimage_closedBall_period_zero
(x : ℝ)
(ε : ℝ)
:
QuotientAddGroup.mk ⁻¹' Metric.closedBall (↑x) ε = Metric.closedBall x ε
theorem
AddCircle.coe_real_preimage_closedBall_eq_iUnion
(p : ℝ)
(x : ℝ)
(ε : ℝ)
:
QuotientAddGroup.mk ⁻¹' Metric.closedBall (↑x) ε = ⋃ (z : ℤ), Metric.closedBall (x + z • p) ε
theorem
AddCircle.coe_real_preimage_closedBall_inter_eq
(p : ℝ)
{x : ℝ}
{ε : ℝ}
(s : Set ℝ)
(hs : s ⊆ Metric.closedBall x (|p| / 2))
:
QuotientAddGroup.mk ⁻¹' Metric.closedBall (↑x) ε ∩ s = if ε < |p| / 2 then Metric.closedBall x ε ∩ s else s
theorem
AddCircle.exists_norm_eq_of_isOfFinAddOrder
{p : ℝ}
[hp : Fact (0 < p)]
{u : AddCircle p}
(hu : IsOfFinAddOrder u)
:
theorem
AddCircle.le_add_order_smul_norm_of_isOfFinAddOrder
{p : ℝ}
[hp : Fact (0 < p)]
{u : AddCircle p}
(hu : IsOfFinAddOrder u)
(hu' : u ≠ 0)
:
p ≤ addOrderOf u • ‖u‖