Documentation

Mathlib.Analysis.Normed.Field.Lemmas

Normed fields #

In this file we continue building the theory of (semi)normed rings and fields.

Some useful results that relate the topology of the normed field to the discrete topology include:

theorem Filter.Tendsto.zero_mul_isBoundedUnder_le {α : Type u_1} {ι : Type u_3} [NonUnitalSeminormedRing α] {f : ια} {g : ια} {l : Filter ι} (hf : Filter.Tendsto f l (nhds 0)) (hg : Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) l ((fun (x : α) => x) g)) :
Filter.Tendsto (fun (x : ι) => f x * g x) l (nhds 0)
theorem Filter.isBoundedUnder_le_mul_tendsto_zero {α : Type u_1} {ι : Type u_3} [NonUnitalSeminormedRing α] {f : ια} {g : ια} {l : Filter ι} (hf : Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) l (norm f)) (hg : Filter.Tendsto g l (nhds 0)) :
Filter.Tendsto (fun (x : ι) => f x * g x) l (nhds 0)
instance Pi.nonUnitalSeminormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalSeminormedRing (π i)] :
NonUnitalSeminormedRing ((i : ι) → π i)

Non-unital seminormed ring structure on the product of finitely many non-unital seminormed rings, using the sup norm.

Equations
instance Pi.seminormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → SeminormedRing (π i)] :
SeminormedRing ((i : ι) → π i)

Seminormed ring structure on the product of finitely many seminormed rings, using the sup norm.

Equations
instance Pi.nonUnitalNormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalNormedRing (π i)] :
NonUnitalNormedRing ((i : ι) → π i)

Normed ring structure on the product of finitely many non-unital normed rings, using the sup norm.

Equations
instance Pi.normedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NormedRing (π i)] :
NormedRing ((i : ι) → π i)

Normed ring structure on the product of finitely many normed rings, using the sup norm.

Equations
instance Pi.nonUnitalSeminormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalSeminormedCommRing (π i)] :
NonUnitalSeminormedCommRing ((i : ι) → π i)

Non-unital seminormed commutative ring structure on the product of finitely many non-unital seminormed commutative rings, using the sup norm.

Equations
instance Pi.nonUnitalNormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalNormedCommRing (π i)] :
NonUnitalNormedCommRing ((i : ι) → π i)

Normed commutative ring structure on the product of finitely many non-unital normed commutative rings, using the sup norm.

Equations
instance Pi.seminormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → SeminormedCommRing (π i)] :
SeminormedCommRing ((i : ι) → π i)

Seminormed commutative ring structure on the product of finitely many seminormed commutative rings, using the sup norm.

Equations
instance Pi.normedCommutativeRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NormedCommRing (π i)] :
NormedCommRing ((i : ι) → π i)

Normed commutative ring structure on the product of finitely many normed commutative rings, using the sup norm.

Equations
@[instance 100]
Equations
  • =
@[instance 100]

A seminormed ring is a topological ring.

Equations
  • =
Equations
Equations
Equations
theorem antilipschitzWith_mul_left {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
AntilipschitzWith a‖₊⁻¹ fun (x : α) => a * x
theorem antilipschitzWith_mul_right {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
AntilipschitzWith a‖₊⁻¹ fun (x : α) => x * a
def DilationEquiv.mulLeft {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) :
α ≃ᵈ α

Multiplication by a nonzero element a on the left as a DilationEquiv of a normed division ring.

Equations
Instances For
    @[simp]
    theorem DilationEquiv.mulLeft_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
    @[simp]
    theorem DilationEquiv.mulLeft_symm_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
    (DilationEquiv.mulLeft a ha).symm x = a⁻¹ * x
    def DilationEquiv.mulRight {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) :
    α ≃ᵈ α

    Multiplication by a nonzero element a on the right as a DilationEquiv of a normed division ring.

    Equations
    Instances For
      @[simp]
      theorem DilationEquiv.mulRight_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
      @[simp]
      theorem DilationEquiv.mulRight_symm_apply {α : Type u_1} [NormedDivisionRing α] (a : α) (ha : a 0) (x : α) :
      (DilationEquiv.mulRight a ha).symm x = x * a⁻¹
      @[simp]
      theorem Filter.comap_mul_left_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      @[simp]
      theorem Filter.map_mul_left_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      Filter.map (fun (x : α) => a * x) (Bornology.cobounded α) = Bornology.cobounded α
      @[simp]
      theorem Filter.comap_mul_right_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      @[simp]
      theorem Filter.map_mul_right_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :
      Filter.map (fun (x : α) => x * a) (Bornology.cobounded α) = Bornology.cobounded α
      theorem Filter.tendsto_mul_left_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :

      Multiplication on the left by a nonzero element of a normed division ring tends to infinity at infinity.

      theorem Filter.tendsto_mul_right_cobounded {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : a 0) :

      Multiplication on the right by a nonzero element of a normed division ring tends to infinity at infinity.

      @[instance 100]
      Equations
      • =
      @[instance 100]

      A normed division ring is a topological division ring.

      Equations
      • =
      theorem IsOfFinOrder.norm_eq_one {α : Type u_1} [NormedDivisionRing α] {a : α} (ha : IsOfFinOrder a) :
      @[simp]
      theorem AddChar.norm_apply {α : Type u_1} [NormedDivisionRing α] {G : Type u_4} [AddLeftCancelMonoid G] [Finite G] (ψ : AddChar G α) (x : G) :
      ψ x = 1
      theorem NormedField.tendsto_norm_zpow_nhdsWithin_0_atTop {α : Type u_1} [NormedDivisionRing α] {m : } (hm : m < 0) :
      Filter.Tendsto (fun (x : α) => x ^ m) (nhdsWithin 0 {0}) Filter.atTop
      theorem NormedField.discreteTopology_or_nontriviallyNormedField (𝕜 : Type u_4) [h : NormedField 𝕜] :
      DiscreteTopology 𝕜 Nonempty { h' : NontriviallyNormedField 𝕜 // NontriviallyNormedField.toNormedField = h }

      A normed field is either nontrivially normed or has a discrete topology. In the discrete topology case, all the norms are 1, by norm_eq_one_iff_ne_zero_of_discrete. The nontrivially normed field instance is provided by a subtype with a proof that the forgetful inheritance to the existing NormedField instance is definitionally true. This allows one to have the new NontriviallyNormedField instance without data clashes.

      @[simp]
      theorem NormedField.continuousAt_zpow {𝕜 : Type u_4} [NontriviallyNormedField 𝕜] {n : } {x : 𝕜} :
      ContinuousAt (fun (x : 𝕜) => x ^ n) x x 0 0 n
      @[simp]
      theorem NormedField.continuousAt_inv {𝕜 : Type u_4} [NontriviallyNormedField 𝕜] {x : 𝕜} :
      ContinuousAt Inv.inv x x 0