Documentation

Mathlib.Analysis.Normed.Ring.Lemmas

Normed rings #

In this file we continue building the theory of (semi)normed rings.

theorem Filter.Tendsto.zero_mul_isBoundedUnder_le {α : Type u_1} {ι : Type u_3} [NonUnitalSeminormedRing α] {f g : ια} {l : Filter ι} (hf : Tendsto f l (nhds 0)) (hg : IsBoundedUnder (fun (x1 x2 : ) => x1 x2) l ((fun (x : α) => x) g)) :
Tendsto (fun (x : ι) => f x * g x) l (nhds 0)
theorem Filter.isBoundedUnder_le_mul_tendsto_zero {α : Type u_1} {ι : Type u_3} [NonUnitalSeminormedRing α] {f g : ια} {l : Filter ι} (hf : IsBoundedUnder (fun (x1 x2 : ) => x1 x2) l (norm f)) (hg : Tendsto g l (nhds 0)) :
Tendsto (fun (x : ι) => f x * g x) l (nhds 0)
instance Pi.nonUnitalSeminormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalSeminormedRing (π i)] :
NonUnitalSeminormedRing ((i : ι) → π i)

Non-unital seminormed ring structure on the product of finitely many non-unital seminormed rings, using the sup norm.

Equations
instance Pi.seminormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → SeminormedRing (π i)] :
SeminormedRing ((i : ι) → π i)

Seminormed ring structure on the product of finitely many seminormed rings, using the sup norm.

Equations
instance Pi.nonUnitalNormedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalNormedRing (π i)] :
NonUnitalNormedRing ((i : ι) → π i)

Normed ring structure on the product of finitely many non-unital normed rings, using the sup norm.

Equations
instance Pi.normedRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NormedRing (π i)] :
NormedRing ((i : ι) → π i)

Normed ring structure on the product of finitely many normed rings, using the sup norm.

Equations
instance Pi.nonUnitalSeminormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalSeminormedCommRing (π i)] :
NonUnitalSeminormedCommRing ((i : ι) → π i)

Non-unital seminormed commutative ring structure on the product of finitely many non-unital seminormed commutative rings, using the sup norm.

Equations
instance Pi.nonUnitalNormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NonUnitalNormedCommRing (π i)] :
NonUnitalNormedCommRing ((i : ι) → π i)

Normed commutative ring structure on the product of finitely many non-unital normed commutative rings, using the sup norm.

Equations
instance Pi.seminormedCommRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → SeminormedCommRing (π i)] :
SeminormedCommRing ((i : ι) → π i)

Seminormed commutative ring structure on the product of finitely many seminormed commutative rings, using the sup norm.

Equations
instance Pi.normedCommutativeRing {ι : Type u_3} {π : ιType u_4} [Fintype ι] [(i : ι) → NormedCommRing (π i)] :
NormedCommRing ((i : ι) → π i)

Normed commutative ring structure on the product of finitely many normed commutative rings, using the sup norm.

Equations
@[instance 100]

A seminormed ring is a topological ring.

theorem antilipschitzWith_mul_left {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] {a : α} (ha : a 0) :
AntilipschitzWith a‖₊⁻¹ fun (x : α) => a * x
theorem antilipschitzWith_mul_right {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] {a : α} (ha : a 0) :
AntilipschitzWith a‖₊⁻¹ fun (x : α) => x * a
def Dilation.mulLeft {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] (a : α) (ha : a 0) :
α →ᵈ α

Multiplication by a nonzero element a on the left, as a Dilation of a ring with a strictly multiplicative norm.

Equations
Instances For
    @[simp]
    theorem Dilation.mulLeft_toFun {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] (a : α) (ha : a 0) (b : α) :
    (mulLeft a ha) b = a * b
    def Dilation.mulRight {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] (a : α) (ha : a 0) :
    α →ᵈ α

    Multiplication by a nonzero element a on the right, as a Dilation of a ring with a strictly multiplicative norm.

    Equations
    Instances For
      @[simp]
      theorem Dilation.mulRight_toFun {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] (a : α) (ha : a 0) (b : α) :
      (mulRight a ha) b = b * a
      @[simp]
      theorem Filter.comap_mul_left_cobounded {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] {a : α} (ha : a 0) :
      comap (fun (x : α) => a * x) (Bornology.cobounded α) = Bornology.cobounded α
      @[simp]
      theorem Filter.comap_mul_right_cobounded {α : Type u_1} [NonUnitalNormedRing α] [NormMulClass α] {a : α} (ha : a 0) :
      comap (fun (x : α) => x * a) (Bornology.cobounded α) = Bornology.cobounded α
      theorem IsOfFinOrder.norm_eq_one {α : Type u_1} [NormedRing α] [NormMulClass α] [NormOneClass α] {a : α} (ha : IsOfFinOrder a) :
      @[simp]
      theorem AddChar.norm_apply {α : Type u_1} [NormedRing α] [NormMulClass α] [NormOneClass α] {G : Type u_4} [AddLeftCancelMonoid G] [Finite G] (ψ : AddChar G α) (x : G) :
      ψ x = 1