Documentation

Mathlib.Analysis.Normed.Algebra.Norm

Algebra norms #

We define algebra norms and multiplicative algebra norms.

Main Definitions #

Tags #

norm, algebra norm

structure AlgebraNorm (R : Type u_1) [SeminormedCommRing R] (S : Type u_2) [Ring S] [Algebra R S] extends RingNorm , Seminorm , RingSeminorm , AddGroupNorm , AddGroupSeminorm :
Type u_2

An algebra norm on an R-algebra S is a ring norm on S compatible with the action of R.

    Instances For
      Equations
      • instInhabitedAlgebraNorm K = { default := { toFun := norm, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := , smul' := } }

      AlgebraNormClass F R S states that F is a type of R-algebra norms on the ring S. You should extend this class when you extend AlgebraNorm.

        Instances
          def AlgebraNorm.toRingSeminorm' {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (f : AlgebraNorm R S) :

          The ring seminorm underlying an algebra norm.

          Equations
          • f.toRingSeminorm' = f.toRingSeminorm
          Instances For
            instance AlgebraNorm.instFunLikeReal {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] :
            Equations
            • AlgebraNorm.instFunLikeReal = { coe := fun (f : AlgebraNorm R S) => f.toFun, coe_injective' := }
            Equations
            • =
            theorem AlgebraNorm.toFun_eq_coe {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (p : AlgebraNorm R S) :
            p.toFun = p
            theorem AlgebraNorm.ext {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {p : AlgebraNorm R S} {q : AlgebraNorm R S} :
            (∀ (x : S), p x = q x)p = q
            theorem AlgebraNorm.extends_norm' {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {f : AlgebraNorm R S} (hf1 : f 1 = 1) (a : R) :
            f (a 1) = a

            An R-algebra norm such that f 1 = 1 extends the norm on R.

            theorem AlgebraNorm.extends_norm {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {f : AlgebraNorm R S} (hf1 : f 1 = 1) (a : R) :
            f ((algebraMap R S) a) = a

            An R-algebra norm such that f 1 = 1 extends the norm on R.

            def AlgebraNorm.restriction {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (A : Subalgebra R S) (f : AlgebraNorm R S) :

            The restriction of an algebra norm to a subalgebra.

            Equations
            • AlgebraNorm.restriction A f = { toFun := fun (x : A) => f x, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := , smul' := }
            Instances For
              def AlgebraNorm.isScalarTower_restriction {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {A : Type u_3} [CommRing A] [Algebra R A] [Algebra A S] [IsScalarTower R A S] (hinj : Function.Injective (algebraMap A S)) (f : AlgebraNorm R S) :

              The restriction of an algebra norm in a scalar tower.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                A multiplicative algebra norm on an R-algebra norm S is a multiplicative ring norm on S compatible with the action of R.

                  Instances For
                    Equations
                    • instInhabitedMulAlgebraNorm K = { default := { toFun := norm, map_zero' := , add_le' := , neg' := , map_one' := , map_mul' := , eq_zero_of_map_eq_zero' := , smul' := } }

                    MulAlgebraNormClass F R S states that F is a type of multiplicative R-algebra norms on the ring S. You should extend this class when you extend MulAlgebraNorm.

                      Instances
                        Equations
                        • MulAlgebraNorm.instFunLikeReal = { coe := fun (f : MulAlgebraNorm R S) => f.toFun, coe_injective' := }
                        theorem MulAlgebraNorm.toFun_eq_coe {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (p : MulAlgebraNorm R S) :
                        p.toFun = p
                        theorem MulAlgebraNorm.ext {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] {p : MulAlgebraNorm R S} {q : MulAlgebraNorm R S} :
                        (∀ (x : S), p x = q x)p = q
                        theorem MulAlgebraNorm.extends_norm' {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (f : MulAlgebraNorm R S) (a : R) :
                        f (a 1) = a

                        A multiplicative R-algebra norm extends the norm on R.

                        theorem MulAlgebraNorm.extends_norm {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (f : MulAlgebraNorm R S) (a : R) :
                        f ((algebraMap R S) a) = a

                        A multiplicative R-algebra norm extends the norm on R.

                        The ring norm underlying a multiplicative ring norm.

                        Equations
                        • f.toRingNorm = { toFun := f, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := }
                        Instances For
                          theorem MulRingNorm.isPowMul {A : Type u_2} [Ring A] (f : MulRingNorm A) :

                          A multiplicative ring norm is power-multiplicative.