Documentation

Mathlib.Analysis.LocallyConvex.WeakDual

Weak Dual in Topological Vector Spaces #

We prove that the weak topology induced by a bilinear form B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜 is locally convex and we explicitly give a neighborhood basis in terms of the family of seminorms fun x => ‖B x y‖ for y : F.

Main definitions #

Main statements #

References #

Tags #

weak dual, seminorm

def LinearMap.toSeminorm {𝕜 : Type u_1} {E : Type u_2} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] (f : E →ₗ[𝕜] 𝕜) :
Seminorm 𝕜 E

Construct a seminorm from a linear form f : E →ₗ[𝕜] 𝕜 over a normed field 𝕜 by fun x => ‖f x‖

Equations
Instances For
    theorem LinearMap.coe_toSeminorm {𝕜 : Type u_1} {E : Type u_2} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] {f : E →ₗ[𝕜] 𝕜} :
    f.toSeminorm = fun (x : E) => f x
    @[simp]
    theorem LinearMap.toSeminorm_apply {𝕜 : Type u_1} {E : Type u_2} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] {f : E →ₗ[𝕜] 𝕜} {x : E} :
    f.toSeminorm x = f x
    theorem LinearMap.toSeminorm_ball_zero {𝕜 : Type u_1} {E : Type u_2} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] {f : E →ₗ[𝕜] 𝕜} {r : } :
    f.toSeminorm.ball 0 r = {x : E | f x < r}
    theorem LinearMap.toSeminorm_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] (f : F →ₗ[𝕜] 𝕜) (g : E →ₗ[𝕜] F) :
    f.toSeminorm.comp g = (f ∘ₗ g).toSeminorm
    def LinearMap.toSeminormFamily {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] (B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :

    Construct a family of seminorms from a bilinear form.

    Equations
    • B.toSeminormFamily y = (B.flip y).toSeminorm
    Instances For
      @[simp]
      theorem LinearMap.toSeminormFamily_apply {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] {B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜} {x : E} {y : F} :
      (B.toSeminormFamily y) x = (B x) y
      theorem LinearMap.weakBilin_withSeminorms {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] (B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :
      WithSeminorms B.toSeminormFamily
      theorem LinearMap.hasBasis_weakBilin {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] (B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :
      (nhds 0).HasBasis B.toSeminormFamily.basisSets id
      instance WeakBilin.locallyConvexSpace {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [NormedField 𝕜] [AddCommGroup E] [Module 𝕜 E] [AddCommGroup F] [Module 𝕜 F] [NormedSpace 𝕜] [Module E] [IsScalarTower 𝕜 E] {B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜} :
      Equations
      • =