Documentation

Mathlib.Analysis.InnerProductSpace.Completion

Completion of an inner product space #

We show that the separation quotient and the completion of an inner product space are inner product spaces.

theorem Inseparable.inner_eq_inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {x₁ xβ‚‚ y₁ yβ‚‚ : E} (hx : Inseparable x₁ xβ‚‚) (hy : Inseparable y₁ yβ‚‚) :
inner x₁ y₁ = inner xβ‚‚ yβ‚‚
instance SeparationQuotient.instInner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] :
Equations
@[simp]
theorem SeparationQuotient.inner_mk_mk {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] (x y : E) :
instance UniformSpace.Completion.toInner {π•œ' : Type u_4} {E' : Type u_5} [TopologicalSpace π•œ'] [UniformSpace E'] [Inner π•œ' E'] :
Equations
@[simp]
theorem UniformSpace.Completion.inner_coe {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] (a b : E) :
inner ↑a ↑b = inner a b
theorem UniformSpace.Completion.Continuous.inner {π•œ : Type u_1} {E : Type u_2} [RCLike π•œ] [SeminormedAddCommGroup E] [InnerProductSpace π•œ E] {Ξ± : Type u_4} [TopologicalSpace Ξ±] {f g : Ξ± β†’ UniformSpace.Completion E} (hf : Continuous f) (hg : Continuous g) :
Continuous fun (x : Ξ±) => inner (f x) (g x)