Fourier transform on Schwartz functions #
This file constructs the Fourier transform as a continuous linear map acting on Schwartz
functions, in fourierTransformCLM
. It is also given as a continuous linear equiv, in
fourierTransformCLE
.
noncomputable def
SchwartzMap.fourierTransformCLM
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
:
SchwartzMap V E →L[𝕜] SchwartzMap V E
The Fourier transform on a real inner product space, as a continuous linear map on the Schwartz space.
Equations
- SchwartzMap.fourierTransformCLM 𝕜 = SchwartzMap.mkCLM (fun (f : V → E) => Real.fourierIntegral f) ⋯ ⋯ ⋯ ⋯
Instances For
@[simp]
theorem
SchwartzMap.fourierTransformCLM_apply
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
(f : SchwartzMap V E)
:
⇑((SchwartzMap.fourierTransformCLM 𝕜) f) = Real.fourierIntegral ⇑f
noncomputable def
SchwartzMap.fourierTransformCLE
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
[CompleteSpace E]
:
SchwartzMap V E ≃L[𝕜] SchwartzMap V E
The Fourier transform on a real inner product space, as a continuous linear equiv on the Schwartz space.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SchwartzMap.fourierTransformCLE_apply
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
[CompleteSpace E]
(f : SchwartzMap V E)
:
⇑((SchwartzMap.fourierTransformCLE 𝕜) f) = Real.fourierIntegral ⇑f
@[simp]
theorem
SchwartzMap.fourierTransformCLE_symm_apply
(𝕜 : Type u_1)
[RCLike 𝕜]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℂ E]
[NormedSpace 𝕜 E]
[SMulCommClass ℂ 𝕜 E]
{V : Type u_3}
[NormedAddCommGroup V]
[InnerProductSpace ℝ V]
[FiniteDimensional ℝ V]
[MeasurableSpace V]
[BorelSpace V]
[CompleteSpace E]
(f : SchwartzMap V E)
:
⇑((SchwartzMap.fourierTransformCLE 𝕜).symm f) = Real.fourierIntegralInv ⇑f